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Abstract— Flaky tests are a major obstacle in modern CI/CD 
pipelines, leading to unreliable feedback, increased reruns, and 
developer frustration. Our previously published adaptive healing 
framework combined Large Language Models (LLMs) and 
Reinforcement Learning (RL) to automate flaky test recovery, but 
it assumed test independence and failed to account for structural 
dependencies between tests. In this paper, we introduce a 
significant extension to that baseline: a Graph Neural Network 
(GNN)-based Test Dependency Mapping layer that models inter-
test relationships. By integrating GNN embeddings with LLM-
classified failures, the RL agent becomes dependency-aware, 
enabling more precise and efficient healing decisions. We evaluate 
the enhanced framework on a real-world industrial platform, a 
social lifestyle application actively used by thousands of users for 
health, nutrition, and coaching. Results show a 90% reduction in 
flaky test-related costs and faster, autonomous resolution of 
dependency-induced failures. 

Keywords— Adaptive Test Healing, Large Language Models 
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I. INTRODUCTION 

Flaky tests, tests that fail intermittently without code changes, 
remain one of the most disruptive elements in modern software 
pipelines. They increase operational costs, reduce developer 
trust in test feedback, and slow down release cycles. While 
several tools and research efforts have attempted to detect or 
mitigate flaky tests, few offer automated, scalable solutions 
suitable for real-world use. 
In our prior published work [1], we introduced an adaptive test 
healing framework combining Large Language Models 
(LLMs) for log analysis and Reinforcement Learning (RL) 
for healing decision-making. This baseline approach 
significantly reduced developer effort by learning from 
historical failures and applying intelligent retry or recovery 
strategies. However, it operated under the assumption that test 
failures were independent events, an assumption that breaks 
down in real-world environments where test cases often depend 
on shared state or execution order. 
This paper addresses that limitation by enhancing the baseline 
framework with Graph Neural Networks (GNNs) to model 
inter-test dependencies. The extended system constructs a test 
dependency graph, learns test embeddings using GNNs, and 
combines them with LLM-derived insights to feed a more 
context-aware state into the RL agent. This enables the agent to 

reason not just about what failed, but also why and how the 
failure relates to other tests. 
We validate our approach using an active industrial 
application: a social media-based lifestyle coaching 
platform used by thousands of users. This application, 
deployed across production environments, presents realistic test 
complexity, asynchronous components, and flakiness 
challenges making it an ideal proving ground. Through rigorous 
evaluation, we demonstrate significant reductions in flaky test 
frequency, developer effort, and CI/CD pipeline cost, 
confirming the practical value of dependency-aware healing in 
production-grade systems. 

II. BACKGROUND AND RELATED WORK 

Flaky tests intermittently failing tests without code changes are 
a major CI/CD bottleneck, causing delays and increased costs. 
Prior work has explored their causes and impact but lacks 
integrated healing solutions. This section reviews flaky test 
research, GNN applications in software engineering, and 
contrasts prior methods with our LLM + RL + GNN-based 
healing framework. 
Leinen et al. [2] highlight productivity losses from flaky tests 
but propose no mitigation. Eck et al. [3] surface developer 
frustration and call for automated healing. Lam et al. [4] 
analyze flaky test patterns but do not address healing. Our work 
addresses this gap with an autonomous healing system that 
models dependency-driven flakiness using GNNs. 
Basic strategies like retries and timeouts often mask flaky test 
issues without addressing root causes. These approaches ignore 
critical factors like shared state and test order dependencies. 
Our previous work [1] introduced LLM + RL healing but 
treated tests as independent. In this paper, we enhance it with 
GNNs to model inter-test relationships, enabling context-aware 
healing decisions. Shi et al.[5] introduced iFixFlakies, a 
framework designed to automatically fix order-dependent flaky 
tests by identifying and utilizing existing helper tests within the 
test suite. These helpers reset or set the necessary states for the 
flaky tests to pass. While iFixFlakies effectively addresses 
certain order dependencies, its reliance on pre-existing helper 
tests limits its applicability, especially in scenarios where such 
helpers are absent.  In contrast, our proposed system advances 
the state of flaky test healing by:1)  Dynamic Detection of 
Runtime Dependencies: Utilizing log traces to dynamically 
identify and understand runtime dependencies between tests, 
rather than relying solely on static analysis or existing helpers 



2) Learning Test Graph Structures via Graph Neural 
Networks (GNNs): Constructing and analyzing test 
dependency graphs using GNNs to capture complex inter-test 
relationships and state interactions 3) Learning (RL): 
Integrating the insights gained from GNNs into an RL agent 
that can adaptively select and apply healing strategies based on 
the current test context and learned experiences.  
Graph Neural Networks (GNNs) have demonstrated significant 
potential in tasks requiring structural reasoning, such as bug 
localization, code summarization, and test prioritization. Code 
Clone Detection: Wenhan Wang et al. [6] proposed a method 
for detecting code clones by constructing a flow-augmented 
abstract syntax tree (FA-AST) and applying GNNs to measure 
code similarity. Their approach effectively models both 
semantic and structural relations within code, outperforming 
previous methods on benchmarks like Google Code Jam and 
BigCloneBench. Test Case Prioritization: Huang et al.[7] 
explored test case prioritization techniques, addressing the 
limitations of considering code units separately. They proposed 
new coverage criteria and algorithms to enhance the fault 
detection rate during regression testing.  However, to the best 
of our knowledge, no prior work has integrated GNNs into a 
healing system specifically designed for flaky test resolution. 
Our paper is the first to apply GNNs to encode test dependency 
structures and augment LLM + RL-based healing decisions, 
thereby advancing the state of automated test healing. 
 

Table 1. Prior work vs. our adaptive healing framework 

Prior Work Focus Limitation Our Contribution 
Leinen et al. 
[1] 

Cost analysis of 
flaky tests in CI/CD 

No automated 
mitigation proposed 

We offer a healing 
framework that reduces 
flaky test cost by 90% 

Eck et al. [2] Developer 
perspective on flaky 
tests 

Identifies pain points 
but no technical 
solution 

We address developer 
effort through autonomous 
healing 

Lam et al. [3] Large-scale flaky 
test behavior study 

Focus on classification 
and metrics, not 
mitigation 

We combine classification 
with automated healing via 
LLM and RL 

Shi et al. [5] Detection of order-
dependent flaky 
tests 

Relies on static 
analysis and helper 
tests; no learning or 
healing 

We dynamically detect 
dependencies and apply 
GNN + RL for adaptive 
healing 

Wang et al. 
[7] 

Code clone 
detection using 
GNNs 

Focused on semantic 
code similarity, not 
testing 

We extend GNN 
application to testing by 
modeling test dependency 
graphs 

Huang et al. 
[6] 

Test case 
prioritization via 
structural analysis 

No integration into 
healing workflows 

We use GNNs not only for 
prioritization but to inform 
real-time healing decisions 

Our previous 
publication  
[1] 

Adaptive Test 
Healing with LLM 
+ RL 

Treats tests as isolated 
units; lacks 
dependency awareness 

We enhance the prior 
framework with GNN-
based dependency 
modeling 

 
Prior work has addressed flaky tests through detection, 
prioritization, or classification, but lacks an integrated, 
automated healing approach.  
Our approach uniquely combines LLMs, GNN-based 
dependency modeling, and RL to enable precise, self-adaptive 
healing in CI/CD pipelines. Table 1 highlights key differences 
from related work. 

III. CASE STUDY SYSTEM: SOCIAL MEDIA-BASED LIFESTYLE 

APPLICATION 

In this paper, we apply our enhanced adaptive healing approach 
to a real-world application: a social media-driven lifestyle 
coaching platform. The application is designed to support users 

in achieving health, fitness, and nutritional goals through a 
combination of AI-driven recommendations, personalized 
coaching, and peer group interaction. Users are invited to join 
specific coaching groups based on their goals such as weight 
loss or healthy eating and are guided by a designated coach who 
monitors daily logs. An AI module processes user behavior and 
inputs to provide personalized suggestions for the coach. The 
application also encourages social engagement through features 
like media sharing, motivational posts, group chats, and one-
on-one scheduling with the coach. AI-powered food image 
analysis provides calorie estimates, and push notifications are 
sent to help users stay consistent with their routines. 

A. Software Architecture 

The application employs a modern, distributed architecture 
built for reliability, scale, and modular deployment. The 
frontend, developed in React.js, handles user interactions such 
as onboarding, goal tracking, reporting, chat, and video 
sessions. The backend, implemented in Node.js, manages API 
endpoints, user sessions, real-time messaging, and business 
logic that supports group dynamics, alerts, and integration with 
AI services. Persistent data including user activity logs, group 
structures, chat history, and AI outputs is stored in a MySQL 
database hosted on AWS RDS. The frontend is served via 
Netlify, while the backend operates on Heroku, ensuring 
flexible deployment and scaling. This multi-cloud setup reflects 
typical architecture in consumer health platforms, where 
component decoupling supports high availability and rapid 
iteration. 

B. Testing Scope and Strategy 

Due to the system’s interconnected architecture and reliance on 
both synchronous and asynchronous services, a layered testing 
strategy was implemented. The team adopted a dual-level 
approach, combining unit tests for component-level 
verification and integration tests for validating end-to-end 
behavior. 
Unit tests are written to verify the correctness of individual 
functions, components, or service methods. The goal is to 
isolate logic and catch regressions early, maintaining a 
recommended coverage threshold between 70% and 80%. 
Integration tests, by contrast, validate interactions across 
multiple layers of the stack such as UI components calling 
backend APIs and triggering AI modules. 
Following the principles of the testing pyramid, the strategy 
favors a higher ratio of unit tests while ensuring sufficient 
integration coverage to detect system-level failures. Table 2 
 summarizes the current distribution of tests across major 
application modules. During test analysis, we observed that 
several integration tests depend on side effects or setup actions 
from prior unit or integration tests. For example, a test 
validating group chat history may depend on a previous test that 
inserts user messages. These implicit dependencies often go 
undocumented in the codebase and contribute to test order 
sensitivity and flakiness. 
 
 
 



Table 2. Number of Unit and Integration Tests for Each Component 
of the Social Media-Based Lifestyle Application 

Component Functionality Unit Tests Integration 
Tests 

Front-End 
(React.js) 

User registration, login, authentication, Group 
dashboard, Report submission forms, Chat and 
video interfaces 

162 55 

Back-End 
(Node.js) 

API endpoints for user management, report 
processing, and AI integrations, Real-time 
chat and video, Business logic for group 
management, notifications 

219 79 

Database 
(MySQL) 

CRUD operations for user profiles, groups, 
and reports 
, Data integrity and constraints 
, Query generation for reports 

111 67 

AI Services Food image analysis for calorie estimation 
, User behavior analysis for recommendations 

145 71 

Notification 
System 

Sending daily reminders 
, Triggering alerts and updates 

71 32 

Total  708 304 

 

C. Managing Flaky Tests 

As with most large-scale CI/CD systems, flaky tests those 
producing inconsistent results without corresponding code 
changes, remain a major reliability concern. These tests 
undermine trust in test feedback and can lead to false positives, 
misdiagnosed failures, and wasted engineering time. In this 
system, flaky behavior is especially pronounced in integration 
tests that involve shared state, third-party AI services, or 
asynchronous operations. Addressing these issues is critical to 
maintaining an efficient development workflow and reducing 
bottlenecks in the deployment pipeline. The original adaptive 
healing approach, powered by LLMs and RL, was applied to 
detect and mitigate such failures. However, in many cases, 
failures originated from implicit dependencies between tests, 
which were not captured by traditional healing logic. This 
limitation forms the motivation for extending our approach with 
a dependency-aware healing mechanism, as introduced in 
this work. 

D. Test Dependency Patterns and Motivation for GNN-Based 
Mapping 

A detailed inspection of failure logs and execution order 
revealed that many flaky test failures were not isolated to the 
failing test itself, but were instead caused by earlier tests that 
modified shared resources such as the database, cache, or user 
sessions. For instance, when tests related to AI-driven calorie 
estimation executed before user authentication tests, some 
failures stemmed from shared state being corrupted or left in an 
incomplete state. These patterns are not easily detectable 
through log analysis alone. They highlight the need for a 
structural model of test dependencies, which can guide healing 
decisions based on test relationships and not just individual 
symptoms. This motivated the integration of a GNN-based test 
dependency mapping layer in our extended approach. 

IV. PROBLEM STATEMENT: FLAKY TESTS AND THE NEED FOR 

DEPENDENCY-AWARE HEALING 

Flaky tests, those that intermittently fail without any changes to 
the underlying code pose a persistent and costly challenge in 
modern CI/CD pipelines. In the context of the social media-
based lifestyle application used in this study, flaky tests 
significantly disrupt the pipeline's reliability, slow down 
developer feedback loops, and increase operational costs. 

The application under test includes between 900 and 1,350 
automated test cases (with 1,012 at the time of writing), 
covering frontend, backend, and AI-driven components. With 
an observed flakiness rate of approximately 5%, each pipeline 
run is subject to 45 - 67 flaky test failures. These failures require 
manual inspection and reruns, contributing to delays in 
integration and release cycles. 
Our previous analysis showed that these flaky tests consume 
roughly 10% of developer time equating to $2,000 monthly in 
staffing costs for a three-developer team with an estimated 
$20,000/month burn rate. Moreover, they account for 15% of 
additional pipeline reruns, which adds another $300 per month 
in cloud execution costs (based on a $2,000 monthly CI 
budget). The annualized cost of these inefficiencies is estimated 
at $27,600, excluding indirect losses such as delayed feature 
delivery, customer dissatisfaction, and decreased team morale. 
While our previously published adaptive healing approach 
using LLMs for log analysis and reinforcement learning (RL) 
for recovery decisions successfully addressed many flaky 
failures, it operated under the assumption that test failures are 
independent events. This simplification overlooked a critical 
aspect of real-world test execution: many flaky tests fail not 
due to internal issues, but due to dependencies on other 
tests. 
Through additional investigation and failure pattern analysis, 
we observed that a significant portion of recurring flakiness 
stemmed from test interdependencies. Examples include shared 
database states, order-sensitive APIs, or temporary side effects 
from earlier test executions. In these cases, blindly retrying the 
failing test as the RL agent in our previous work would do was 
often ineffective. True resolution required broader context: 
which tests had run earlier, what they changed, and how the 
current test related to them. 
This insight revealed a core limitation in our baseline solution. 
Although the RL agent learned from failure patterns, it lacked 
awareness of the structural and behavioral relationships 
between tests. To make intelligent healing decisions in such 
environments, the agent must be able to reason not only about 
what failed and why, but also about how each test fits into a 
larger web of interdependencies. 
As a result, many test failures caused by dependencies remained 
only partially addressed, leading to repeated retries, incomplete 
healing, and unnecessary manual intervention. This not only 
limited the effectiveness of the system but also left significant 
room for improvement in both pipeline efficiency and 
operational cost savings. 
To address this gap, the current work extends our previously 
published approach with a Graph Neural Network (GNN)-
based Test Dependency Mapping module. This enhancement 
enables the system to construct a test dependency graph, 
generate vector embeddings that capture inter-test 
relationships, and feed these into the RL agent for context-
aware healing decisions. By incorporating structural knowledge 
into the healing process, we aim to reduce retry inefficiencies, 
prevent cascading failures, and unlock additional cost and time 
savings making the CI/CD pipeline more resilient and 
autonomous in managing test instability. 



V. APPROACH OVERVIEW 

The diagram in Figure 1 presents a high-level view of a typical 
CI/CD pipeline, which follows a standard process widely 
adopted in software development teams to automate 
integration, testing, deployment, and monitoring activities. 
Within this familiar workflow, we integrate our previously 
published Adaptive Healing using LLM/GPT and RL, and 
introduce a key enhancement: GNN-based Test Dependency 
Mapping, which enables the system to reason about the 
structure and relationships between test cases. 
This extended approach enhances the original LLM and RL-
based healing by allowing the agent to account for test 
interdependencies, a common yet often overlooked source of 
flaky test behavior. The CI/CD pipeline shown here represents 
a generalized flow used for the purpose of demonstrating how 
the adaptive healing approach fits into real-world development 
and testing cycles. 
Development: Developers commit source code to a version 
control repository. Each commit automatically triggers the 
CI/CD pipeline. Associated test scenarios and requirements for 
each feature are predefined and linked to the commits to ensure 
test coverage and traceability. 

Build: The CI system compiles the codebase, resolves 
dependencies, and packages the software for deployment. A 
successful build indicates syntactic and structural correctness of 
the system under test and serves as a prerequisite for the testing 
phase. 

Test with Adaptive Healing (LLM + RL + GNN): 
This stage is split into unit testing and integration testing. If 
failures occur during either stage, the adaptive healing process 
is invoked. The healing mechanism consists of two layers: 

 The yellow-shaded area represents the previously 
published healing approach [1]. It begins with log analysis 
using a Large Language Model (e.g., GPT), followed by 
classification and healing decision-making using a 
Reinforcement Learning agent powered by a Q-table. 

 The purple-shaded area introduces our enhancement in this 
paper: GNN-based Test Dependency Mapping. Here, a 
test dependency graph is constructed and processed by a 
Graph Neural Network, producing contextual embeddings 
that represent each test's structural relationships. These 
embeddings are combined with LLM output and passed to 
the RL agent, enabling more informed and dependency-
aware healing actions. 

Healing Outcomes: The healing system leads to one of three 
possible outcomes: 1) Healed Unit Tests 2) Healed 
Integration Tests  3) Test Flagged for Manual Intervention. 
All log data, failed test metadata, and healing attempts are 
logged to assist in manual debugging. 

Deployment and Monitoring: After successful testing, the 
application is deployed to the designated environment (e.g., 
staging or production). Monitoring tools track system health and 
performance. Any test scenarios associated with new features 
are logged and connected to the pipeline for traceability and 
future validation. This extended architecture allows the adaptive 
healing approach to evolve beyond failure-specific logic and 
incorporate awareness of inter-test relationships, improving both 

precision and efficiency of healing decisions in complex, real-
world CI/CD pipelines. 

 
Figure 1: GNN-Enhanced Adaptive Healing in CI/CD Process. 

VI. GNN-ENHANCED ADAPTIVE HEALING  

Figure 2 illustrates the enhanced adaptive healing process, 
where we integrate Graph Neural Networks (GNNs) into our 
previously proposed LLM and Reinforcement Learning (RL)-
based system. The GNN module introduces a structural 
understanding of test dependencies, enabling the RL agent to 
make better-informed, context-aware healing decisions. The 
purple-shaded area in Figure 2  highlights this new contribution 
which is proposed in this paper. The processes from the prior 
work (baseline) are shown in yellow-shaded area.  Below is a 
step-by-step explanation of each steps.  
 
Step 1, Test Failure Detected: The process begins, as in the 
original approach, when a test failure is detected during the 
execution of a CI/CD pipeline. This failure could occur in unit 
tests, integration tests, system tests, or UI tests. 

 

Figure 2: GNN-Enhanced Adaptive Healing Process 

Step 2, Extract Error Logs and Test Data: Immediately after 
a failure is detected, relevant logs and metadata are extracted. 
This includes stack traces, error messages, execution times, and 
other test-specific information. This data is needed for both 
semantic and structural analysis in the next steps. 



Step 3, Analyze Logs Using LLM: The extracted logs are 
analyzed using a Large Language Model (e.g., GPT), which 
interprets the unstructured content, identifies failure patterns, 
and generates insights into the likely cause, such as timeout 
errors, environment misconfiguration, assertion mismatches, or 
dependency-related issues. This log analysis output is used to 
guide healing decisions. 
Step 4, GNN-based Test Dependency Mapping 
(Enhancement Contribution of this paper): 
Step 4.1, Build Test Dependency Graph : This step marks the 
beginning of the enhancement. In parallel with LLM analysis, 
we construct a test dependency graph representing 
relationships among test cases (Details in VII.A). Step 4.2, 
Generate Test Embeddings with GNN : The dependency 
graph is passed to a Graph Neural Network (e.g., GCN or 
GAT), which computes a vector embedding for each test 
case. (Details in VII.B). Step 4.3,  Combine LLM Output and 
GNN Embedding:  The result from the LLM (failure 
classification) and the GNN (test embedding) are fused into a 
single feature vector, representing the state observed by the RL 
agent. This extended state includes both semantic insights 
(what kind of failure occurred) and dependency-aware context 
(how this test relates to others). The details are discussed in 
Sections  VIII and IX. 
Step 5,  Classify Failure Type Using RL: The reinforcement 
learning agent receives the fused state vector and classifies the 
failure into a specific state category (e.g. timeout_exceeded, 
dependency_issue, flaky_repeat). Based on its learned Q-table, 
the agent selects the healing action with the highest expected 
reward, this could be retrying the test, reordering execution, 
resetting a shared component, or rerunning a dependent test 
first. Unlike the previous version, this decision now reflects 
dependency awareness. 
Step 6, Execute the Test: The chosen healing action is 
executed. If the action involves rerunning the test, resetting 
resources, or reordering, the system applies the changes and re-
executes the test in question. 
Step 7,  Update the Q-Table: Once the action is completed 
and the test has either passed or failed again, the RL agent 
updates its Q-table using the reward signal. A successful 
healing results in a positive reward, reinforcing the action for 
similar dependency scenarios. A failed attempt results in a 
negative reward, prompting future exploration of alternative 
healing strategies. 
Step 8, Test Passed? The system checks if the test passed after 
healing. If it passed, the failure is marked as healed and the 
pipeline resumes. If not, the system decides whether to try a 
different healing action or escalate the issue, based on a 
predefined retry policy. 
Step 9: Exceed Healing Retry Limit: If the test continues to 
fail despite multiple healing attempts, the system flags the issue 
for manual intervention. Diagnostic artifacts, including error 
logs, embeddings, and attempted healing actions are provided 
to aid in debugging. 
This enhanced GNN-based approach extends the original 
adaptive healing approach by introducing a structural 
representation of test dependencies. The GNN-generated 
embeddings enable the RL agent to make smarter, dependency-

aware healing decisions, reducing ineffective retries, avoiding 
cascading failures, and improving overall pipeline stability. The 
purple region in Figure 3 encapsulates the new contribution 
introduced in this work. 

VII. GRENERATING TEST EMBEDDING WITH GNN 

This section explains the construction of the test dependency 
graph, the embedding process using GNNs, and how these 
embeddings are used by the RL agent. A concrete example is 
included to demonstrate the workflow. 

A. Constructing the Test Dependency Graph 

The first step involves representing the test suite as a directed 
graph 𝐺 ൌ ሺ𝑉,𝐸ሻ where each node 𝑣௜ ∈ 𝑉 in 𝑒௜௝ ∈
𝐸 corresponds to a test case, and each directed edge 𝑣௜ ∈
𝑉 represents a dependency from test 𝑣௜ to test 𝑣௝. Such 
dependencies may reflect: 1) Shared use of global resources 
(e.g., databases, caches), 2) Setup and teardown interactions, 3) 
Historical co-failure patterns and 4) Execution ordering 
dependencies These dependencies are derived using a 
combination of: 1) Static analysis, to trace shared modules, test 
fixtures, and common setup routines 2) Dynamic trace logs, to 
observe test behavior across CI pipeline runs and detect co-
execution patterns 3) Historical data, to analyze co-failure 
events from past test executions. 
Each test node is annotated with features such as execution 
duration, flakiness score (based on historical stability), and test 
type (unit/integration). 

B. Embedding Tests with GNN 

Once the dependency graph is created, it is processed by a 
Graph Neural Network (GNN) typically a Graph 
Convolutional Network (GCN) or a Graph Attention 
Network (GAT). These models generate low-dimensional 
vector representations (embeddings) for each node (test case), 
capturing both local attributes and the influence of connected 
nodes. Formally, at each layer 𝑙, the embedding of a test node 
𝑣௜is updated as: 

ℎ௜
ሺ௟ሻ ൌ 𝜎 ෍ 𝑊ሺ௟ሻℎ௝

ሺ௜ି௟ሻ ൅ 𝑏ሺ௟ሻ

௝∈ேሺ௜ሻ

 

 ℎ௜
ሺ௟ሻ is the embedding of node 𝑖 at layer 𝑙, 

 𝒩ሺ𝑖ሻ is the set of neighbors of node iii, 
 𝑊ሺ௟ሻ, 𝑏ሺ௟ሻ are learnable parameters, 
 𝜎 is a non-linear activation function. 

 

The result is a dense vector (e.g., 64 or 128 dimensions) for 
each test case, encoding its dependency context. 

VIII. INTEGRATING GNN WITH LLM AND REINFORCEMENT 

LEARNING: A DEPENDENCY-AWARE HEALING WORKFLOW 

To illustrate how the proposed enhancement fits into the 
broader adaptive healing approach, we walk through a practical 
scenario that demonstrates the integration of the existing LLM 
+ RL components with the new GNN-based dependency 
modeling layer. 
In the original approach, the healing decision was driven by a 
combination of log analysis using a Large Language Model 
(LLM) and failure classification via a reinforcement learning 
(RL) agent. The LLM parsed unstructured test logs to classify 



failure types such as timeout, assertion_failure, or 
dependency_issue. The RL agent then used this classification 
as a state input to select the most appropriate healing action, 
such as retrying the test, increasing timeouts, or resetting the 
environment based on Q-learning. 
However, this setup lacked structural context. The RL agent 
treated each test as an independent unit, unaware of possible 
dependencies on other tests. This blind spot limited its ability 
to resolve failures rooted in inter-test interactions or order 
dependencies. 
The current work addresses this limitation by introducing a 
GNN that augments the RL agent’s input with a dependency-
aware embedding. This allows the agent to reason not only 
about what failed, but also about how the failed test is 
structurally and behaviorally connected to others. 

A. Example: Test Order Dependency Causing Flakiness 

Consider a simplified test suite with three test cases in a CI/CD 
pipeline: 
 

Test ID Description Flaky? Dependency 
Test A Checks user login No – 
Test B Tests user profile update Sometimes Depends on Test A's DB 

write 
Test C Validates AI 

recommendation service 
No – 

 
Without GNN: LLM + RL Only:  
In the baseline scenario, Test B fails during pipeline execution. 
The LLM analyzes the error log and classifies the failure as a 
dependency_issue based on contextual clues like “Error 500 – 
user not found.”. The RL agent looks up this failure type in its 
Q-table and selects the best-known action: “retry.” Test B is 
retried, but the failure persists. Eventually, the test is flagged 
for manual intervention. This happens because the RL agent is 
unaware that Test B’s failure may stem from a prior test 
(Test A) that inserted the user into the database. If Test A 
silently failed or left the DB in an inconsistent state, retrying B 
alone cannot succeed. 

 
With GNN + RL: Dependency-Aware Healing: When the 
GNN-enhanced system is in place, the flow changes 
significantly. 
1. A Test Dependency Graph is constructed, where: 

 Nodes: Test A, B, C 
 Edges: A → B (due to shared DB usage) 

2. The GNN processes the graph and generates a vector embedding for each 
test. For Test B, the embedding captures: 
 Its high dependency sensitivity 
 Its connection to Test A 
 Historical flakiness patterns 

3. The LLM still classifies the failure as a dependency_issue. 
4. The RL agent receives an enriched state vector, combining: 

 LLM’s classification 
 GNN’s embedding (e.g., [0.5, 0.3, 0.7, ...]) 

5. Based on this composite state, the RL agent learns that: 
 Test B failed 
 Test A ran earlier 
 Test A has a strong structural influence on B 

6. Instead of retrying Test B blindly, the RL agent: 
 Chooses to reset the shared database state 
 Re-runs both Test A and Test B in order 

7. The healing succeeds. Test B passes. The Q-table is updated to reinforce 
this successful sequence. 

B. Impact of Dependency-Aware Healing 

To illustrate the practical impact of integrating GNN-based 
dependency embeddings into the healing process, we present a 
comparison between two scenarios: the baseline LLM + RL 
model without GNN and the proposed GNN-enhanced system. 
In this example, a flaky test (Test B) fails due to its dependence 
on Test A, which modifies shared database state. In the baseline 
model, the RL agent guided solely by the LLM’s failure 
classification chooses to retry Test B independently. This 
approach results in a low pass rate and often requires manual 
intervention when retries fail. In contrast, the GNN-enhanced 
system augments the RL agent’s state with a dependency-aware 
embedding, allowing it to recognize that Test B is structurally 
dependent on Test A. The agent therefore selects a more 
effective healing strategy: resetting the database and re-
running both Test A and B. This context-aware decision leads 
to a significantly higher pass rate and eliminates the need for 
manual debugging. The differences between these two 
approaches are summarized in Table 3. This comparison 
underscores the advantage of incorporating structural context 
into the healing approach. By allowing the RL agent to consider 
not just the symptom of the failure but also the test’s 
dependencies, the system can avoid ineffective retries and 
apply more precise, dependency-aware recovery strategies. 
 

Table 3. Healing Outcomes With vs. Without GNN Awareness 

Healing 
System 

Healing Action Pass Rate Manual 
 Debugging 

Without GNN Retry Test B 20% Required 
With GNN Reset DB + Re-run 

A and B 
90% Avoided 

IX. IMPLEMENTATION DETAILS 

A. Test Dependency Graph Construction 

We construct the test dependency graph by analyzing test 
execution data collected over multiple CI/CD runs. Each test 
case is represented as a node, uniquely identified by its fully 
qualified test function name. The graph is built in Python using 
the NetworkX library, allowing efficient manipulation of 
directed graphs with weighted edges. Edges are added between 
nodes to represent test dependencies. We define three major 
sources of evidence for these dependencies: 
(1) Co-failure correlations, derived from GitHub Actions 
pipeline logs stored in Amazon S3 and parsed using AWS 
Lambda functions. For each test pair, we compute a co-failure 
frequency score across prior builds. 
(2) Shared resource access, identified via instrumented 
logging and resource tagging in Python unit and integration 
tests. For instance, resource access logs for RDS (PostgreSQL) 
and DynamoDB tables are annotated using a custom test 
decorator that records database access. 
(3) Order sensitivity, identified from failed builds where test 
reordering (due to parallelization or test runner randomization) 
results in inconsistent outcomes. These patterns are tracked via 
build metadata stored in Amazon DynamoDB. This 
dependency graph is stored as a JSON structure and versioned 
per test suite update. A new graph is generated weekly via a 
scheduled AWS CodeBuild job triggered by CodePipeline. 



This balances freshness with compute efficiency and enables 
reproducibility of healing behavior over time. 

 

B. GNN Architecture and Embedding Generation 

We implement the Graph Neural Network (GNN) using 
PyTorch Geometric, a specialized deep learning library for 
graph-based modeling built on top of PyTorch. The model used 
is a two-layer Graph Convolutional Network (GCN), which 
allows information to propagate across connected test nodes in 
the dependency graph. 
Each node is initialized with a feature vector that includes four 
categories of data: 
(1) LLM-derived failure embeddings, generated using a 
fine-tuned BERT model from the Hugging Face Transformers 
library. This model classifies test log output into categories 
such as timeouts, assertion failures, environment issues, and 
side-effect contamination. 
(2) Execution metadata, such as retry counts, average test 
duration, and success rates, extracted from JUnit test reports 
and GitHub Actions run data via Python scripts. 
(3) Co-failure scores, computed as normalized frequency 
metrics from the historical test run logs. 
(4) Shared resource flags, represented as binary indicators 
based on static analysis and log instrumentation during test 
execution. 
Each node embedding output by the GCN is a 64-dimensional 
vector. These vectors are computed during the pipeline pre-
processing stage and cached using AWS ElastiCache (Redis) 
for fast retrieval during runtime. This setup allows the system 
to scale to thousands of test cases across microservices without 
latency overhead. 

 

C. Integration with Reinforcement Learning 

The GCN output is used to enrich the state space of a Deep Q-
Network (DQN)-based RL agent implemented using Stable 
Baselines3 in Python. This RL agent runs inside a dedicated 
AWS CodeBuild environment as part of a healing microservice 
invoked after failed CI stages. The agent receives the GCN 
embedding of the failed test, the LLM-classified failure type, 
and execution metadata, which are concatenated into a single 
state vector. This state vector is passed into the DQN model, 
which selects from one of several healing actions: Retry with 
exponential backoff, Re-execute dependent tests, Reorder test 
execution, Environment reset (via test container restart), Skip 
and flag as unstable (deferred manual analysis). GNN 
embeddings provide the RL agent with structural context 
highlighting whether the failure is isolated or related to an 

upstream test’s side effect. This allows for nuanced healing 
strategies beyond brute-force retries. The DQN agent is trained 
offline using a dataset of past flaky test resolutions and is 
periodically re-trained on new production data. AWS 
Sagemaker is used for model retraining and versioning, while 
model inference runs inside a lightweight Lambda function for 
minimal impact on CI runtime. 

 

X. DEPENDENCY-AWARE HEALING IN SOCIAL MEDIA 

LIFESTYLE APP 

To evaluate the effectiveness of the enhanced adaptive healing 
approach, we extended our prior case study involving a real-
world social media-based lifestyle application. Over 1,000 
automated tests, spanning both unit and integration levels, 
continuously validate the platform as part of its CI/CD pipeline. 
The previously published adaptive healing approach, based on 
Large Language Model (LLM)-driven log analysis and 
Reinforcement Learning (RL)-based recovery policy 
significantly reduced flaky test issues. However, it treated tests 
as isolated entities, overlooking inter-test dependencies that 
often underlie persistent or cascading failures. To address this 
gap, we integrated a Graph Neural Network (GNN)-based 
dependency mapping layer into the healing approach. This 
extension enables the system to reason over the structural 
relationships between tests and to make more informed healing 
decisions. 

A. Test Dependency Graph and Embedding Integration 

A directed test dependency graph was constructed using a 
combination of static analysis (shared fixtures, APIs, and 
database access), dynamic trace data (test execution order and 
runtime interactions), and historical failure correlation mining. 
The resulting graph included 1,012 test nodes and 934 directed 
edges. The edge types reflected three dominant dependency 
patterns: shared database state (432 edges), API call sequencing 
(311 edges), and recurring co-failure relationships (191 edges). 
A two-layer Graph Convolutional Network (GCN) was trained 
to produce 64-dimensional embeddings for each test node. 
These embeddings captured both local node attributes, such as 
historical flakiness score and execution duration, and the 
structural influence of neighboring tests. The embeddings were 
injected into the RL agent’s state space alongside the LLM-
classified failure type, allowing for dependency-aware healing 
policies. 

B. Measured Impact on Flaky Test Behavior 

The GNN-enhanced adaptive healing approach was evaluated 
over 50 full CI/CD pipeline runs. Three configurations were 
compared: no healing, baseline LLM + RL healing, and the 
proposed GNN + LLM + RL approach. The results demonstrate 
that while the baseline LLM + RL system already reduced flaky 
test incidents by 80%, the GNN-based enhancement achieved a 
further 60% reduction over the baseline approach we proposed 
in [1] (Table 4).  

Example : Dependency Graph Construction 
Tests: test_create_user(), test_update_user(), test_fetch_user() 
Historical data shows test_fetch_user() fails when test_create_user() is skipped. 
All tests access the same RDS table users. 
Resulting edges: 

create_user → fetch_user (co-failure weight: 0.85) 
create_user → update_user (shared state overlap: 1.0) 
update_user → fetch_user (combined order/resource signal: 0.6) 

These edges are stored with weights and metadata for GNN input. 

Example : GCN Feature Vector for test_fetch_user() 
LLM category: Timeout → [0.1, 0.3, 0.6, 0.0] 
Retry count: 2 → normalized to 0.2 
Co-failure score with create_user: 0.8 
Accesses RDS: True → 1 
Final input vector: [0.1, 0.3, 0.6, 0.0, 0.2, 0.8, 1, …] 
After one GCN pass: Output embedding = [0.11, 0.03, …, 0.76] (dim=64) 

Example : RL State Vector for test_fetch_user() 
GCN embedding: [0.12, 0.08, …, 0.91] (64-dim) 
LLM output: AssertionFailure → [0, 1, 0, 0] 
Retry count: 2; Order position: 7 → [2, 7] 
Final state vector: [0.12, 0.08, …, 0.91, 0, 1, 0, 0, 2, 7] 
Action chosen: Reorder test to run after create_user + retry once 



Table 4 . Comparison of Healing Methods  
Approach Flaky 

Tests 
Rerun
s 

Debug 
Time 

Cost 

No Healing 50/run 15% 10% $2,300/mo 
LLM + RL 10/run 5% 2% $450/mo 
GNN + LLM + RL 4/run 2% 0.8% $230/mo 

More importantly, it reduced unnecessary retries and enabled 
context-aware healing strategies that resolved dependency-
related failures earlier in the pipeline lifecycle. 

C. Cost Efficiency and ROI 

The initial monthly cost of flaky test management, estimated at 
$2,300, comprising $2,000 in lost developer time and $300 in 
cloud reruns was reduced to $450 with the LLM + RL system 
and further lowered to $230 with the GNN-enhanced approach. 
The additional infrastructure cost for the GNN model (training 
and embedding storage) was approximately $40/month. 
However, this yielded an additional $260/month in operational 
savings, amounting to approximately $3,120 annually. 
This enhancement brings the total annual savings across both 
improvements to $24,840, representing a 90% reduction from 
the original baseline and achieving return on investment (ROI) 
within four months of implementation. These results validate 
the practical benefits of embedding structural context into 
autonomous test healing approaches, especially for CI/CD 
pipelines operating at moderate to high scale. 

D. Evaluation Against Industry Standards 

The cost and efficiency improvements achieved by the GNN-
enhanced adaptive healing framework remain highly 
competitive when evaluated against industry benchmarks. 
Flaky tests are widely acknowledged as a persistent challenge 
in modern software engineering, particularly in continuous 
integration and delivery pipelines. Industry reports consistently 
estimate that flaky tests consume between 5% and 10% of 
developer time, while also contributing significantly to cloud 
resource waste, delayed releases, and loss of confidence in test 
results [2], [3], [4]. For mid-sized engineering teams similar to 
the one studied in this paper, these inefficiencies typically 
translate to annual losses ranging from $50,000 to $100,000, 
depending on test suite size, deployment frequency, and manual 
debugging practices. In this context, the original LLM + RL 
healing approach already demonstrated a substantial reduction 
in cost and effort by bringing flaky test-related developer time 
down to 2% and reducing pipeline reruns by 10%, resulting in 
annual savings of approximately $22,200. With the 
integration of GNN-based test dependency modeling, the 
approach further reduces developer intervention to less than 
1% and pipeline reruns to just 2%, enabling an additional 
$3,120 in yearly savings. The combined total $24,840 in 
annual savings represents a 90% reduction in flaky test-
related operational costs. This outcome was achieved with 
minimal additional infrastructure cost and a short payback 
period of under four months for the GNN enhancement. 
Compared to typical return-on-investment timelines for 
reliability-focused test automation efforts, which often exceed 
two years this solution offers a uniquely fast and effective 
alternative. By proactively identifying and resolving flaky tests 
using both semantic (LLM) and structural (GNN) signals, the 

system not only improves pipeline stability but also helps teams 
meet industry standards for automated testing reliability with 
reduced overhead and greater scalability. These results position 
the proposed GNN-enhanced adaptive healing approach as a 
cost-effective, technically robust, and industry-aligned 
solution for organizations seeking to reduce test flakiness and 
improve CI/CD efficiency. 

XI. CONCLUSION 

This paper presented an enhanced adaptive healing approach 
that combines Large Language Models (LLMs), Reinforcement 
Learning (RL), and Graph Neural Networks (GNNs) to detect 
and resolve flaky tests more effectively. By introducing a GNN-
based test dependency mapping layer, the system learns 
structural relationships between tests and integrates them into 
the healing policy. The results from a real-world case study 
demonstrate a significant reduction in flaky test incidents, 
reruns, and operational costs, achieving up to 90% savings 
compared to baseline CI/CD operations. 
Future Work will explore dynamic test graph evolution, where 
the system updates test dependencies in real time as the 
codebase and test suite evolve. We also plan to investigate the 
use of Transformer-based graph encoders and attention-based 
RL to further enhance the model’s adaptability and healing 
precision. Lastly, integrating developer feedback loops may 
allow the system to learn from human intervention and 
continually refine its decision-making strategy. 
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