
Enhancing Adaptive Test Healing with Graph Neural
Networks for Dependency-Aware Decision Making

Nariman Mani, Salma Attaranasl
Engineering/R&D Department, Nutrosal Inc.

Ottawa, ON Canada
{nariman | salma}@research.nutrosal.com

Abstract— Flaky tests are a major obstacle in modern CI/CD
pipelines, leading to unreliable feedback, increased reruns, and
developer frustration. Our previously published adaptive healing
framework combined Large Language Models (LLMs) and
Reinforcement Learning (RL) to automate flaky test recovery, but
it assumed test independence and failed to account for structural
dependencies between tests. In this paper, we introduce a
significant extension to that baseline: a Graph Neural Network
(GNN)-based Test Dependency Mapping layer that models inter-
test relationships. By integrating GNN embeddings with LLM-
classified failures, the RL agent becomes dependency-aware,
enabling more precise and efficient healing decisions. We evaluate
the enhanced framework on a real-world industrial platform, a
social lifestyle application actively used by thousands of users for
health, nutrition, and coaching. Results show a 90% reduction in
flaky test-related costs and faster, autonomous resolution of
dependency-induced failures.

Keywords— Adaptive Test Healing, Large Language Models
(LLMs), GPT, Reinforcement Learning (RL), Flaky Tests, Self-
Healing Test Automation, Continuous Integration (CI), Graph
Neural Networks (GNN)

I. INTRODUCTION

Flaky tests, tests that fail intermittently without code changes,
remain one of the most disruptive elements in modern software
pipelines. They increase operational costs, reduce developer
trust in test feedback, and slow down release cycles. While
several tools and research efforts have attempted to detect or
mitigate flaky tests, few offer automated, scalable solutions
suitable for real-world use.
In our prior published work [1], we introduced an adaptive test
healing framework combining Large Language Models
(LLMs) for log analysis and Reinforcement Learning (RL)
for healing decision-making. This baseline approach
significantly reduced developer effort by learning from
historical failures and applying intelligent retry or recovery
strategies. However, it operated under the assumption that test
failures were independent events, an assumption that breaks
down in real-world environments where test cases often depend
on shared state or execution order.
This paper addresses that limitation by enhancing the baseline
framework with Graph Neural Networks (GNNs) to model
inter-test dependencies. The extended system constructs a test
dependency graph, learns test embeddings using GNNs, and
combines them with LLM-derived insights to feed a more
context-aware state into the RL agent. This enables the agent to

reason not just about what failed, but also why and how the
failure relates to other tests.
We validate our approach using an active industrial
application: a social media-based lifestyle coaching
platform used by thousands of users. This application,
deployed across production environments, presents realistic test
complexity, asynchronous components, and flakiness
challenges making it an ideal proving ground. Through rigorous
evaluation, we demonstrate significant reductions in flaky test
frequency, developer effort, and CI/CD pipeline cost,
confirming the practical value of dependency-aware healing in
production-grade systems.

II. BACKGROUND AND RELATED WORK

Flaky tests intermittently failing tests without code changes are
a major CI/CD bottleneck, causing delays and increased costs.
Prior work has explored their causes and impact but lacks
integrated healing solutions. This section reviews flaky test
research, GNN applications in software engineering, and
contrasts prior methods with our LLM + RL + GNN-based
healing framework.
Leinen et al. [2] highlight productivity losses from flaky tests
but propose no mitigation. Eck et al. [3] surface developer
frustration and call for automated healing. Lam et al. [4]
analyze flaky test patterns but do not address healing. Our work
addresses this gap with an autonomous healing system that
models dependency-driven flakiness using GNNs.
Basic strategies like retries and timeouts often mask flaky test
issues without addressing root causes. These approaches ignore
critical factors like shared state and test order dependencies.
Our previous work [1] introduced LLM + RL healing but
treated tests as independent. In this paper, we enhance it with
GNNs to model inter-test relationships, enabling context-aware
healing decisions. Shi et al.[5] introduced iFixFlakies, a
framework designed to automatically fix order-dependent flaky
tests by identifying and utilizing existing helper tests within the
test suite. These helpers reset or set the necessary states for the
flaky tests to pass. While iFixFlakies effectively addresses
certain order dependencies, its reliance on pre-existing helper
tests limits its applicability, especially in scenarios where such
helpers are absent. In contrast, our proposed system advances
the state of flaky test healing by:1) Dynamic Detection of
Runtime Dependencies: Utilizing log traces to dynamically
identify and understand runtime dependencies between tests,
rather than relying solely on static analysis or existing helpers

2) Learning Test Graph Structures via Graph Neural
Networks (GNNs): Constructing and analyzing test
dependency graphs using GNNs to capture complex inter-test
relationships and state interactions 3) Learning (RL):
Integrating the insights gained from GNNs into an RL agent
that can adaptively select and apply healing strategies based on
the current test context and learned experiences.
Graph Neural Networks (GNNs) have demonstrated significant
potential in tasks requiring structural reasoning, such as bug
localization, code summarization, and test prioritization. Code
Clone Detection: Wenhan Wang et al. [6] proposed a method
for detecting code clones by constructing a flow-augmented
abstract syntax tree (FA-AST) and applying GNNs to measure
code similarity. Their approach effectively models both
semantic and structural relations within code, outperforming
previous methods on benchmarks like Google Code Jam and
BigCloneBench. Test Case Prioritization: Huang et al.[7]
explored test case prioritization techniques, addressing the
limitations of considering code units separately. They proposed
new coverage criteria and algorithms to enhance the fault
detection rate during regression testing. However, to the best
of our knowledge, no prior work has integrated GNNs into a
healing system specifically designed for flaky test resolution.
Our paper is the first to apply GNNs to encode test dependency
structures and augment LLM + RL-based healing decisions,
thereby advancing the state of automated test healing.

Table 1. Prior work vs. our adaptive healing framework

Prior Work Focus Limitation Our Contribution
Leinen et al.
[1]

Cost analysis of
flaky tests in CI/CD

No automated
mitigation proposed

We offer a healing
framework that reduces
flaky test cost by 90%

Eck et al. [2] Developer
perspective on flaky
tests

Identifies pain points
but no technical
solution

We address developer
effort through autonomous
healing

Lam et al. [3] Large-scale flaky
test behavior study

Focus on classification
and metrics, not
mitigation

We combine classification
with automated healing via
LLM and RL

Shi et al. [5] Detection of order-
dependent flaky
tests

Relies on static
analysis and helper
tests; no learning or
healing

We dynamically detect
dependencies and apply
GNN + RL for adaptive
healing

Wang et al.
[7]

Code clone
detection using
GNNs

Focused on semantic
code similarity, not
testing

We extend GNN
application to testing by
modeling test dependency
graphs

Huang et al.
[6]

Test case
prioritization via
structural analysis

No integration into
healing workflows

We use GNNs not only for
prioritization but to inform
real-time healing decisions

Our previous
publication
[1]

Adaptive Test
Healing with LLM
+ RL

Treats tests as isolated
units; lacks
dependency awareness

We enhance the prior
framework with GNN-
based dependency
modeling

Prior work has addressed flaky tests through detection,
prioritization, or classification, but lacks an integrated,
automated healing approach.
Our approach uniquely combines LLMs, GNN-based
dependency modeling, and RL to enable precise, self-adaptive
healing in CI/CD pipelines. Table 1 highlights key differences
from related work.

III. CASE STUDY SYSTEM: SOCIAL MEDIA-BASED LIFESTYLE

APPLICATION

In this paper, we apply our enhanced adaptive healing approach
to a real-world application: a social media-driven lifestyle
coaching platform. The application is designed to support users

in achieving health, fitness, and nutritional goals through a
combination of AI-driven recommendations, personalized
coaching, and peer group interaction. Users are invited to join
specific coaching groups based on their goals such as weight
loss or healthy eating and are guided by a designated coach who
monitors daily logs. An AI module processes user behavior and
inputs to provide personalized suggestions for the coach. The
application also encourages social engagement through features
like media sharing, motivational posts, group chats, and one-
on-one scheduling with the coach. AI-powered food image
analysis provides calorie estimates, and push notifications are
sent to help users stay consistent with their routines.

A. Software Architecture

The application employs a modern, distributed architecture
built for reliability, scale, and modular deployment. The
frontend, developed in React.js, handles user interactions such
as onboarding, goal tracking, reporting, chat, and video
sessions. The backend, implemented in Node.js, manages API
endpoints, user sessions, real-time messaging, and business
logic that supports group dynamics, alerts, and integration with
AI services. Persistent data including user activity logs, group
structures, chat history, and AI outputs is stored in a MySQL
database hosted on AWS RDS. The frontend is served via
Netlify, while the backend operates on Heroku, ensuring
flexible deployment and scaling. This multi-cloud setup reflects
typical architecture in consumer health platforms, where
component decoupling supports high availability and rapid
iteration.

B. Testing Scope and Strategy

Due to the system’s interconnected architecture and reliance on
both synchronous and asynchronous services, a layered testing
strategy was implemented. The team adopted a dual-level
approach, combining unit tests for component-level
verification and integration tests for validating end-to-end
behavior.
Unit tests are written to verify the correctness of individual
functions, components, or service methods. The goal is to
isolate logic and catch regressions early, maintaining a
recommended coverage threshold between 70% and 80%.
Integration tests, by contrast, validate interactions across
multiple layers of the stack such as UI components calling
backend APIs and triggering AI modules.
Following the principles of the testing pyramid, the strategy
favors a higher ratio of unit tests while ensuring sufficient
integration coverage to detect system-level failures. Table 2
 summarizes the current distribution of tests across major
application modules. During test analysis, we observed that
several integration tests depend on side effects or setup actions
from prior unit or integration tests. For example, a test
validating group chat history may depend on a previous test that
inserts user messages. These implicit dependencies often go
undocumented in the codebase and contribute to test order
sensitivity and flakiness.

Table 2. Number of Unit and Integration Tests for Each Component
of the Social Media-Based Lifestyle Application

Component Functionality Unit Tests Integration
Tests

Front-End
(React.js)

User registration, login, authentication, Group
dashboard, Report submission forms, Chat and
video interfaces

162 55

Back-End
(Node.js)

API endpoints for user management, report
processing, and AI integrations, Real-time
chat and video, Business logic for group
management, notifications

219 79

Database
(MySQL)

CRUD operations for user profiles, groups,
and reports
, Data integrity and constraints
, Query generation for reports

111 67

AI Services Food image analysis for calorie estimation
, User behavior analysis for recommendations

145 71

Notification
System

Sending daily reminders
, Triggering alerts and updates

71 32

Total 708 304

C. Managing Flaky Tests

As with most large-scale CI/CD systems, flaky tests those
producing inconsistent results without corresponding code
changes, remain a major reliability concern. These tests
undermine trust in test feedback and can lead to false positives,
misdiagnosed failures, and wasted engineering time. In this
system, flaky behavior is especially pronounced in integration
tests that involve shared state, third-party AI services, or
asynchronous operations. Addressing these issues is critical to
maintaining an efficient development workflow and reducing
bottlenecks in the deployment pipeline. The original adaptive
healing approach, powered by LLMs and RL, was applied to
detect and mitigate such failures. However, in many cases,
failures originated from implicit dependencies between tests,
which were not captured by traditional healing logic. This
limitation forms the motivation for extending our approach with
a dependency-aware healing mechanism, as introduced in
this work.

D. Test Dependency Patterns and Motivation for GNN-Based
Mapping

A detailed inspection of failure logs and execution order
revealed that many flaky test failures were not isolated to the
failing test itself, but were instead caused by earlier tests that
modified shared resources such as the database, cache, or user
sessions. For instance, when tests related to AI-driven calorie
estimation executed before user authentication tests, some
failures stemmed from shared state being corrupted or left in an
incomplete state. These patterns are not easily detectable
through log analysis alone. They highlight the need for a
structural model of test dependencies, which can guide healing
decisions based on test relationships and not just individual
symptoms. This motivated the integration of a GNN-based test
dependency mapping layer in our extended approach.

IV. PROBLEM STATEMENT: FLAKY TESTS AND THE NEED FOR

DEPENDENCY-AWARE HEALING

Flaky tests, those that intermittently fail without any changes to
the underlying code pose a persistent and costly challenge in
modern CI/CD pipelines. In the context of the social media-
based lifestyle application used in this study, flaky tests
significantly disrupt the pipeline's reliability, slow down
developer feedback loops, and increase operational costs.

The application under test includes between 900 and 1,350
automated test cases (with 1,012 at the time of writing),
covering frontend, backend, and AI-driven components. With
an observed flakiness rate of approximately 5%, each pipeline
run is subject to 45 - 67 flaky test failures. These failures require
manual inspection and reruns, contributing to delays in
integration and release cycles.
Our previous analysis showed that these flaky tests consume
roughly 10% of developer time equating to $2,000 monthly in
staffing costs for a three-developer team with an estimated
$20,000/month burn rate. Moreover, they account for 15% of
additional pipeline reruns, which adds another $300 per month
in cloud execution costs (based on a $2,000 monthly CI
budget). The annualized cost of these inefficiencies is estimated
at $27,600, excluding indirect losses such as delayed feature
delivery, customer dissatisfaction, and decreased team morale.
While our previously published adaptive healing approach
using LLMs for log analysis and reinforcement learning (RL)
for recovery decisions successfully addressed many flaky
failures, it operated under the assumption that test failures are
independent events. This simplification overlooked a critical
aspect of real-world test execution: many flaky tests fail not
due to internal issues, but due to dependencies on other
tests.
Through additional investigation and failure pattern analysis,
we observed that a significant portion of recurring flakiness
stemmed from test interdependencies. Examples include shared
database states, order-sensitive APIs, or temporary side effects
from earlier test executions. In these cases, blindly retrying the
failing test as the RL agent in our previous work would do was
often ineffective. True resolution required broader context:
which tests had run earlier, what they changed, and how the
current test related to them.
This insight revealed a core limitation in our baseline solution.
Although the RL agent learned from failure patterns, it lacked
awareness of the structural and behavioral relationships
between tests. To make intelligent healing decisions in such
environments, the agent must be able to reason not only about
what failed and why, but also about how each test fits into a
larger web of interdependencies.
As a result, many test failures caused by dependencies remained
only partially addressed, leading to repeated retries, incomplete
healing, and unnecessary manual intervention. This not only
limited the effectiveness of the system but also left significant
room for improvement in both pipeline efficiency and
operational cost savings.
To address this gap, the current work extends our previously
published approach with a Graph Neural Network (GNN)-
based Test Dependency Mapping module. This enhancement
enables the system to construct a test dependency graph,
generate vector embeddings that capture inter-test
relationships, and feed these into the RL agent for context-
aware healing decisions. By incorporating structural knowledge
into the healing process, we aim to reduce retry inefficiencies,
prevent cascading failures, and unlock additional cost and time
savings making the CI/CD pipeline more resilient and
autonomous in managing test instability.

V. APPROACH OVERVIEW

The diagram in Figure 1 presents a high-level view of a typical
CI/CD pipeline, which follows a standard process widely
adopted in software development teams to automate
integration, testing, deployment, and monitoring activities.
Within this familiar workflow, we integrate our previously
published Adaptive Healing using LLM/GPT and RL, and
introduce a key enhancement: GNN-based Test Dependency
Mapping, which enables the system to reason about the
structure and relationships between test cases.
This extended approach enhances the original LLM and RL-
based healing by allowing the agent to account for test
interdependencies, a common yet often overlooked source of
flaky test behavior. The CI/CD pipeline shown here represents
a generalized flow used for the purpose of demonstrating how
the adaptive healing approach fits into real-world development
and testing cycles.
Development: Developers commit source code to a version
control repository. Each commit automatically triggers the
CI/CD pipeline. Associated test scenarios and requirements for
each feature are predefined and linked to the commits to ensure
test coverage and traceability.

Build: The CI system compiles the codebase, resolves
dependencies, and packages the software for deployment. A
successful build indicates syntactic and structural correctness of
the system under test and serves as a prerequisite for the testing
phase.

Test with Adaptive Healing (LLM + RL + GNN):
This stage is split into unit testing and integration testing. If
failures occur during either stage, the adaptive healing process
is invoked. The healing mechanism consists of two layers:

 The yellow-shaded area represents the previously
published healing approach [1]. It begins with log analysis
using a Large Language Model (e.g., GPT), followed by
classification and healing decision-making using a
Reinforcement Learning agent powered by a Q-table.

 The purple-shaded area introduces our enhancement in this
paper: GNN-based Test Dependency Mapping. Here, a
test dependency graph is constructed and processed by a
Graph Neural Network, producing contextual embeddings
that represent each test's structural relationships. These
embeddings are combined with LLM output and passed to
the RL agent, enabling more informed and dependency-
aware healing actions.

Healing Outcomes: The healing system leads to one of three
possible outcomes: 1) Healed Unit Tests 2) Healed
Integration Tests 3) Test Flagged for Manual Intervention.
All log data, failed test metadata, and healing attempts are
logged to assist in manual debugging.

Deployment and Monitoring: After successful testing, the
application is deployed to the designated environment (e.g.,
staging or production). Monitoring tools track system health and
performance. Any test scenarios associated with new features
are logged and connected to the pipeline for traceability and
future validation. This extended architecture allows the adaptive
healing approach to evolve beyond failure-specific logic and
incorporate awareness of inter-test relationships, improving both

precision and efficiency of healing decisions in complex, real-
world CI/CD pipelines.

Figure 1: GNN-Enhanced Adaptive Healing in CI/CD Process.

VI. GNN-ENHANCED ADAPTIVE HEALING

Figure 2 illustrates the enhanced adaptive healing process,
where we integrate Graph Neural Networks (GNNs) into our
previously proposed LLM and Reinforcement Learning (RL)-
based system. The GNN module introduces a structural
understanding of test dependencies, enabling the RL agent to
make better-informed, context-aware healing decisions. The
purple-shaded area in Figure 2 highlights this new contribution
which is proposed in this paper. The processes from the prior
work (baseline) are shown in yellow-shaded area. Below is a
step-by-step explanation of each steps.

Step 1, Test Failure Detected: The process begins, as in the
original approach, when a test failure is detected during the
execution of a CI/CD pipeline. This failure could occur in unit
tests, integration tests, system tests, or UI tests.

Figure 2: GNN-Enhanced Adaptive Healing Process

Step 2, Extract Error Logs and Test Data: Immediately after
a failure is detected, relevant logs and metadata are extracted.
This includes stack traces, error messages, execution times, and
other test-specific information. This data is needed for both
semantic and structural analysis in the next steps.

Step 3, Analyze Logs Using LLM: The extracted logs are
analyzed using a Large Language Model (e.g., GPT), which
interprets the unstructured content, identifies failure patterns,
and generates insights into the likely cause, such as timeout
errors, environment misconfiguration, assertion mismatches, or
dependency-related issues. This log analysis output is used to
guide healing decisions.
Step 4, GNN-based Test Dependency Mapping
(Enhancement Contribution of this paper):
Step 4.1, Build Test Dependency Graph : This step marks the
beginning of the enhancement. In parallel with LLM analysis,
we construct a test dependency graph representing
relationships among test cases (Details in VII.A). Step 4.2,
Generate Test Embeddings with GNN : The dependency
graph is passed to a Graph Neural Network (e.g., GCN or
GAT), which computes a vector embedding for each test
case. (Details in VII.B). Step 4.3, Combine LLM Output and
GNN Embedding: The result from the LLM (failure
classification) and the GNN (test embedding) are fused into a
single feature vector, representing the state observed by the RL
agent. This extended state includes both semantic insights
(what kind of failure occurred) and dependency-aware context
(how this test relates to others). The details are discussed in
Sections VIII and IX.
Step 5, Classify Failure Type Using RL: The reinforcement
learning agent receives the fused state vector and classifies the
failure into a specific state category (e.g. timeout_exceeded,
dependency_issue, flaky_repeat). Based on its learned Q-table,
the agent selects the healing action with the highest expected
reward, this could be retrying the test, reordering execution,
resetting a shared component, or rerunning a dependent test
first. Unlike the previous version, this decision now reflects
dependency awareness.
Step 6, Execute the Test: The chosen healing action is
executed. If the action involves rerunning the test, resetting
resources, or reordering, the system applies the changes and re-
executes the test in question.
Step 7, Update the Q-Table: Once the action is completed
and the test has either passed or failed again, the RL agent
updates its Q-table using the reward signal. A successful
healing results in a positive reward, reinforcing the action for
similar dependency scenarios. A failed attempt results in a
negative reward, prompting future exploration of alternative
healing strategies.
Step 8, Test Passed? The system checks if the test passed after
healing. If it passed, the failure is marked as healed and the
pipeline resumes. If not, the system decides whether to try a
different healing action or escalate the issue, based on a
predefined retry policy.
Step 9: Exceed Healing Retry Limit: If the test continues to
fail despite multiple healing attempts, the system flags the issue
for manual intervention. Diagnostic artifacts, including error
logs, embeddings, and attempted healing actions are provided
to aid in debugging.
This enhanced GNN-based approach extends the original
adaptive healing approach by introducing a structural
representation of test dependencies. The GNN-generated
embeddings enable the RL agent to make smarter, dependency-

aware healing decisions, reducing ineffective retries, avoiding
cascading failures, and improving overall pipeline stability. The
purple region in Figure 3 encapsulates the new contribution
introduced in this work.

VII. GRENERATING TEST EMBEDDING WITH GNN

This section explains the construction of the test dependency
graph, the embedding process using GNNs, and how these
embeddings are used by the RL agent. A concrete example is
included to demonstrate the workflow.

A. Constructing the Test Dependency Graph

The first step involves representing the test suite as a directed
graph 𝐺 ൌ ሺ𝑉,𝐸ሻ where each node 𝑣௜ ∈ 𝑉 in 𝑒௜௝ ∈
𝐸 corresponds to a test case, and each directed edge 𝑣௜ ∈
𝑉 represents a dependency from test 𝑣௜ to test 𝑣௝. Such
dependencies may reflect: 1) Shared use of global resources
(e.g., databases, caches), 2) Setup and teardown interactions, 3)
Historical co-failure patterns and 4) Execution ordering
dependencies These dependencies are derived using a
combination of: 1) Static analysis, to trace shared modules, test
fixtures, and common setup routines 2) Dynamic trace logs, to
observe test behavior across CI pipeline runs and detect co-
execution patterns 3) Historical data, to analyze co-failure
events from past test executions.
Each test node is annotated with features such as execution
duration, flakiness score (based on historical stability), and test
type (unit/integration).

B. Embedding Tests with GNN

Once the dependency graph is created, it is processed by a
Graph Neural Network (GNN) typically a Graph
Convolutional Network (GCN) or a Graph Attention
Network (GAT). These models generate low-dimensional
vector representations (embeddings) for each node (test case),
capturing both local attributes and the influence of connected
nodes. Formally, at each layer 𝑙, the embedding of a test node
𝑣௜is updated as:

ℎ௜
ሺ௟ሻ ൌ 𝜎 ෍ 𝑊ሺ௟ሻℎ௝

ሺ௜ି௟ሻ ൅ 𝑏ሺ௟ሻ

௝∈ேሺ௜ሻ

 ℎ௜
ሺ௟ሻ is the embedding of node 𝑖 at layer 𝑙,

 𝒩ሺ𝑖ሻ is the set of neighbors of node iii,
 𝑊ሺ௟ሻ, 𝑏ሺ௟ሻ are learnable parameters,
 𝜎 is a non-linear activation function.

The result is a dense vector (e.g., 64 or 128 dimensions) for
each test case, encoding its dependency context.

VIII. INTEGRATING GNN WITH LLM AND REINFORCEMENT

LEARNING: A DEPENDENCY-AWARE HEALING WORKFLOW

To illustrate how the proposed enhancement fits into the
broader adaptive healing approach, we walk through a practical
scenario that demonstrates the integration of the existing LLM
+ RL components with the new GNN-based dependency
modeling layer.
In the original approach, the healing decision was driven by a
combination of log analysis using a Large Language Model
(LLM) and failure classification via a reinforcement learning
(RL) agent. The LLM parsed unstructured test logs to classify

failure types such as timeout, assertion_failure, or
dependency_issue. The RL agent then used this classification
as a state input to select the most appropriate healing action,
such as retrying the test, increasing timeouts, or resetting the
environment based on Q-learning.
However, this setup lacked structural context. The RL agent
treated each test as an independent unit, unaware of possible
dependencies on other tests. This blind spot limited its ability
to resolve failures rooted in inter-test interactions or order
dependencies.
The current work addresses this limitation by introducing a
GNN that augments the RL agent’s input with a dependency-
aware embedding. This allows the agent to reason not only
about what failed, but also about how the failed test is
structurally and behaviorally connected to others.

A. Example: Test Order Dependency Causing Flakiness

Consider a simplified test suite with three test cases in a CI/CD
pipeline:

Test ID Description Flaky? Dependency
Test A Checks user login No –
Test B Tests user profile update Sometimes Depends on Test A's DB

write
Test C Validates AI

recommendation service
No –

Without GNN: LLM + RL Only:
In the baseline scenario, Test B fails during pipeline execution.
The LLM analyzes the error log and classifies the failure as a
dependency_issue based on contextual clues like “Error 500 –
user not found.”. The RL agent looks up this failure type in its
Q-table and selects the best-known action: “retry.” Test B is
retried, but the failure persists. Eventually, the test is flagged
for manual intervention. This happens because the RL agent is
unaware that Test B’s failure may stem from a prior test
(Test A) that inserted the user into the database. If Test A
silently failed or left the DB in an inconsistent state, retrying B
alone cannot succeed.

With GNN + RL: Dependency-Aware Healing: When the
GNN-enhanced system is in place, the flow changes
significantly.
1. A Test Dependency Graph is constructed, where:

 Nodes: Test A, B, C
 Edges: A → B (due to shared DB usage)

2. The GNN processes the graph and generates a vector embedding for each
test. For Test B, the embedding captures:
 Its high dependency sensitivity
 Its connection to Test A
 Historical flakiness patterns

3. The LLM still classifies the failure as a dependency_issue.
4. The RL agent receives an enriched state vector, combining:

 LLM’s classification
 GNN’s embedding (e.g., [0.5, 0.3, 0.7, ...])

5. Based on this composite state, the RL agent learns that:
 Test B failed
 Test A ran earlier
 Test A has a strong structural influence on B

6. Instead of retrying Test B blindly, the RL agent:
 Chooses to reset the shared database state
 Re-runs both Test A and Test B in order

7. The healing succeeds. Test B passes. The Q-table is updated to reinforce
this successful sequence.

B. Impact of Dependency-Aware Healing

To illustrate the practical impact of integrating GNN-based
dependency embeddings into the healing process, we present a
comparison between two scenarios: the baseline LLM + RL
model without GNN and the proposed GNN-enhanced system.
In this example, a flaky test (Test B) fails due to its dependence
on Test A, which modifies shared database state. In the baseline
model, the RL agent guided solely by the LLM’s failure
classification chooses to retry Test B independently. This
approach results in a low pass rate and often requires manual
intervention when retries fail. In contrast, the GNN-enhanced
system augments the RL agent’s state with a dependency-aware
embedding, allowing it to recognize that Test B is structurally
dependent on Test A. The agent therefore selects a more
effective healing strategy: resetting the database and re-
running both Test A and B. This context-aware decision leads
to a significantly higher pass rate and eliminates the need for
manual debugging. The differences between these two
approaches are summarized in Table 3. This comparison
underscores the advantage of incorporating structural context
into the healing approach. By allowing the RL agent to consider
not just the symptom of the failure but also the test’s
dependencies, the system can avoid ineffective retries and
apply more precise, dependency-aware recovery strategies.

Table 3. Healing Outcomes With vs. Without GNN Awareness

Healing
System

Healing Action Pass Rate Manual
 Debugging

Without GNN Retry Test B 20% Required
With GNN Reset DB + Re-run

A and B
90% Avoided

IX. IMPLEMENTATION DETAILS

A. Test Dependency Graph Construction

We construct the test dependency graph by analyzing test
execution data collected over multiple CI/CD runs. Each test
case is represented as a node, uniquely identified by its fully
qualified test function name. The graph is built in Python using
the NetworkX library, allowing efficient manipulation of
directed graphs with weighted edges. Edges are added between
nodes to represent test dependencies. We define three major
sources of evidence for these dependencies:
(1) Co-failure correlations, derived from GitHub Actions
pipeline logs stored in Amazon S3 and parsed using AWS
Lambda functions. For each test pair, we compute a co-failure
frequency score across prior builds.
(2) Shared resource access, identified via instrumented
logging and resource tagging in Python unit and integration
tests. For instance, resource access logs for RDS (PostgreSQL)
and DynamoDB tables are annotated using a custom test
decorator that records database access.
(3) Order sensitivity, identified from failed builds where test
reordering (due to parallelization or test runner randomization)
results in inconsistent outcomes. These patterns are tracked via
build metadata stored in Amazon DynamoDB. This
dependency graph is stored as a JSON structure and versioned
per test suite update. A new graph is generated weekly via a
scheduled AWS CodeBuild job triggered by CodePipeline.

This balances freshness with compute efficiency and enables
reproducibility of healing behavior over time.

B. GNN Architecture and Embedding Generation

We implement the Graph Neural Network (GNN) using
PyTorch Geometric, a specialized deep learning library for
graph-based modeling built on top of PyTorch. The model used
is a two-layer Graph Convolutional Network (GCN), which
allows information to propagate across connected test nodes in
the dependency graph.
Each node is initialized with a feature vector that includes four
categories of data:
(1) LLM-derived failure embeddings, generated using a
fine-tuned BERT model from the Hugging Face Transformers
library. This model classifies test log output into categories
such as timeouts, assertion failures, environment issues, and
side-effect contamination.
(2) Execution metadata, such as retry counts, average test
duration, and success rates, extracted from JUnit test reports
and GitHub Actions run data via Python scripts.
(3) Co-failure scores, computed as normalized frequency
metrics from the historical test run logs.
(4) Shared resource flags, represented as binary indicators
based on static analysis and log instrumentation during test
execution.
Each node embedding output by the GCN is a 64-dimensional
vector. These vectors are computed during the pipeline pre-
processing stage and cached using AWS ElastiCache (Redis)
for fast retrieval during runtime. This setup allows the system
to scale to thousands of test cases across microservices without
latency overhead.

C. Integration with Reinforcement Learning

The GCN output is used to enrich the state space of a Deep Q-
Network (DQN)-based RL agent implemented using Stable
Baselines3 in Python. This RL agent runs inside a dedicated
AWS CodeBuild environment as part of a healing microservice
invoked after failed CI stages. The agent receives the GCN
embedding of the failed test, the LLM-classified failure type,
and execution metadata, which are concatenated into a single
state vector. This state vector is passed into the DQN model,
which selects from one of several healing actions: Retry with
exponential backoff, Re-execute dependent tests, Reorder test
execution, Environment reset (via test container restart), Skip
and flag as unstable (deferred manual analysis). GNN
embeddings provide the RL agent with structural context
highlighting whether the failure is isolated or related to an

upstream test’s side effect. This allows for nuanced healing
strategies beyond brute-force retries. The DQN agent is trained
offline using a dataset of past flaky test resolutions and is
periodically re-trained on new production data. AWS
Sagemaker is used for model retraining and versioning, while
model inference runs inside a lightweight Lambda function for
minimal impact on CI runtime.

X. DEPENDENCY-AWARE HEALING IN SOCIAL MEDIA

LIFESTYLE APP

To evaluate the effectiveness of the enhanced adaptive healing
approach, we extended our prior case study involving a real-
world social media-based lifestyle application. Over 1,000
automated tests, spanning both unit and integration levels,
continuously validate the platform as part of its CI/CD pipeline.
The previously published adaptive healing approach, based on
Large Language Model (LLM)-driven log analysis and
Reinforcement Learning (RL)-based recovery policy
significantly reduced flaky test issues. However, it treated tests
as isolated entities, overlooking inter-test dependencies that
often underlie persistent or cascading failures. To address this
gap, we integrated a Graph Neural Network (GNN)-based
dependency mapping layer into the healing approach. This
extension enables the system to reason over the structural
relationships between tests and to make more informed healing
decisions.

A. Test Dependency Graph and Embedding Integration

A directed test dependency graph was constructed using a
combination of static analysis (shared fixtures, APIs, and
database access), dynamic trace data (test execution order and
runtime interactions), and historical failure correlation mining.
The resulting graph included 1,012 test nodes and 934 directed
edges. The edge types reflected three dominant dependency
patterns: shared database state (432 edges), API call sequencing
(311 edges), and recurring co-failure relationships (191 edges).
A two-layer Graph Convolutional Network (GCN) was trained
to produce 64-dimensional embeddings for each test node.
These embeddings captured both local node attributes, such as
historical flakiness score and execution duration, and the
structural influence of neighboring tests. The embeddings were
injected into the RL agent’s state space alongside the LLM-
classified failure type, allowing for dependency-aware healing
policies.

B. Measured Impact on Flaky Test Behavior

The GNN-enhanced adaptive healing approach was evaluated
over 50 full CI/CD pipeline runs. Three configurations were
compared: no healing, baseline LLM + RL healing, and the
proposed GNN + LLM + RL approach. The results demonstrate
that while the baseline LLM + RL system already reduced flaky
test incidents by 80%, the GNN-based enhancement achieved a
further 60% reduction over the baseline approach we proposed
in [1] (Table 4).

Example : Dependency Graph Construction
Tests: test_create_user(), test_update_user(), test_fetch_user()
Historical data shows test_fetch_user() fails when test_create_user() is skipped.
All tests access the same RDS table users.
Resulting edges:

create_user → fetch_user (co-failure weight: 0.85)
create_user → update_user (shared state overlap: 1.0)
update_user → fetch_user (combined order/resource signal: 0.6)

These edges are stored with weights and metadata for GNN input.

Example : GCN Feature Vector for test_fetch_user()
LLM category: Timeout → [0.1, 0.3, 0.6, 0.0]
Retry count: 2 → normalized to 0.2
Co-failure score with create_user: 0.8
Accesses RDS: True → 1
Final input vector: [0.1, 0.3, 0.6, 0.0, 0.2, 0.8, 1, …]
After one GCN pass: Output embedding = [0.11, 0.03, …, 0.76] (dim=64)

Example : RL State Vector for test_fetch_user()
GCN embedding: [0.12, 0.08, …, 0.91] (64-dim)
LLM output: AssertionFailure → [0, 1, 0, 0]
Retry count: 2; Order position: 7 → [2, 7]
Final state vector: [0.12, 0.08, …, 0.91, 0, 1, 0, 0, 2, 7]
Action chosen: Reorder test to run after create_user + retry once

Table 4 . Comparison of Healing Methods
Approach Flaky

Tests
Rerun
s

Debug
Time

Cost

No Healing 50/run 15% 10% $2,300/mo
LLM + RL 10/run 5% 2% $450/mo
GNN + LLM + RL 4/run 2% 0.8% $230/mo

More importantly, it reduced unnecessary retries and enabled
context-aware healing strategies that resolved dependency-
related failures earlier in the pipeline lifecycle.

C. Cost Efficiency and ROI

The initial monthly cost of flaky test management, estimated at
$2,300, comprising $2,000 in lost developer time and $300 in
cloud reruns was reduced to $450 with the LLM + RL system
and further lowered to $230 with the GNN-enhanced approach.
The additional infrastructure cost for the GNN model (training
and embedding storage) was approximately $40/month.
However, this yielded an additional $260/month in operational
savings, amounting to approximately $3,120 annually.
This enhancement brings the total annual savings across both
improvements to $24,840, representing a 90% reduction from
the original baseline and achieving return on investment (ROI)
within four months of implementation. These results validate
the practical benefits of embedding structural context into
autonomous test healing approaches, especially for CI/CD
pipelines operating at moderate to high scale.

D. Evaluation Against Industry Standards

The cost and efficiency improvements achieved by the GNN-
enhanced adaptive healing framework remain highly
competitive when evaluated against industry benchmarks.
Flaky tests are widely acknowledged as a persistent challenge
in modern software engineering, particularly in continuous
integration and delivery pipelines. Industry reports consistently
estimate that flaky tests consume between 5% and 10% of
developer time, while also contributing significantly to cloud
resource waste, delayed releases, and loss of confidence in test
results [2], [3], [4]. For mid-sized engineering teams similar to
the one studied in this paper, these inefficiencies typically
translate to annual losses ranging from $50,000 to $100,000,
depending on test suite size, deployment frequency, and manual
debugging practices. In this context, the original LLM + RL
healing approach already demonstrated a substantial reduction
in cost and effort by bringing flaky test-related developer time
down to 2% and reducing pipeline reruns by 10%, resulting in
annual savings of approximately $22,200. With the
integration of GNN-based test dependency modeling, the
approach further reduces developer intervention to less than
1% and pipeline reruns to just 2%, enabling an additional
$3,120 in yearly savings. The combined total $24,840 in
annual savings represents a 90% reduction in flaky test-
related operational costs. This outcome was achieved with
minimal additional infrastructure cost and a short payback
period of under four months for the GNN enhancement.
Compared to typical return-on-investment timelines for
reliability-focused test automation efforts, which often exceed
two years this solution offers a uniquely fast and effective
alternative. By proactively identifying and resolving flaky tests
using both semantic (LLM) and structural (GNN) signals, the

system not only improves pipeline stability but also helps teams
meet industry standards for automated testing reliability with
reduced overhead and greater scalability. These results position
the proposed GNN-enhanced adaptive healing approach as a
cost-effective, technically robust, and industry-aligned
solution for organizations seeking to reduce test flakiness and
improve CI/CD efficiency.

XI. CONCLUSION

This paper presented an enhanced adaptive healing approach
that combines Large Language Models (LLMs), Reinforcement
Learning (RL), and Graph Neural Networks (GNNs) to detect
and resolve flaky tests more effectively. By introducing a GNN-
based test dependency mapping layer, the system learns
structural relationships between tests and integrates them into
the healing policy. The results from a real-world case study
demonstrate a significant reduction in flaky test incidents,
reruns, and operational costs, achieving up to 90% savings
compared to baseline CI/CD operations.
Future Work will explore dynamic test graph evolution, where
the system updates test dependencies in real time as the
codebase and test suite evolve. We also plan to investigate the
use of Transformer-based graph encoders and attention-based
RL to further enhance the model’s adaptability and healing
precision. Lastly, integrating developer feedback loops may
allow the system to learn from human intervention and
continually refine its decision-making strategy.

REFERENCES
[1] N. Mani and S. Attaranasl, “Adaptive Test Healing using LLM/GPT and

Reinforcement Learning,” in To be Appeared 2025 IEEE International
Conference on Software Testing, Verification and Validation (ICST)
Workshops (ICSTW), Naples, Italy, Apr. 2025. [Online]. Available:
https://manistechmind.com/img/icstcomp25aist-id180-p.pdf

[2] F. Leinen, D. Elsner, A. Pretschner, A. Stahlbauer, M. Sailer, and E.
Jürgens, “Cost of Flaky Tests in Continuous Integration: An Industrial
Case Study,” in 2024 IEEE Conference on Software Testing, Verification
and Validation (ICST), Toronto, ON, Canada: IEEE, May 2024, pp. 329–
340. doi: 10.1109/ICST60714.2024.00037.

[3] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
Flaky Tests: The Developer’s Perspective,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Aug. 2019,
pp. 830–840. doi: 10.1145/3338906.3338945.

[4] W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, and J. Bell, “A large-
scale longitudinal study of flaky tests,” Proc. ACM Program. Lang., vol.
4, no. OOPSLA, pp. 1–29, Nov. 2020, doi: 10.1145/3428270.

[5] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “iFixFlakies: a
framework for automatically fixing order-dependent flaky tests,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, Tallinn Estonia: ACM, Aug. 2019, pp. 545–555. doi:
10.1145/3338906.3338925.

[6] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting Code Clones with
Graph Neural Network and Flow-Augmented Abstract Syntax Tree,” in
2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), London, ON, Canada: IEEE,
Feb. 2020, pp. 261–271. doi: 10.1109/saner48275.2020.9054857.

[7] R. Huang, Q. Zhang, D. Towey, W. Sun, and J. Chen, “Regression test
case prioritization by code combinations coverage,” Journal of Systems
and Software, vol. 169, p. 110712, Nov. 2020, doi:
10.1016/j.jss.2020.110712.

