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Abstract— Flaky tests disrupt software development pipelines 
by producing inconsistent results, undermining reliability and 
efficiency. This paper introduces a hybrid framework for adaptive 
test healing, combining Large Language Models (LLMs) like GPT 
with Reinforcement Learning (RL) to address test flakiness 
dynamically. LLMs analyze test logs to classify failures and 
extract contextual insights, while the RL agent learns optimal 
strategies for test retries, parameter tuning, and environment 
resets. Experimental results demonstrate the framework's 
effectiveness in reducing flakiness and improving CI/CD pipeline 
stability, outperforming traditional approaches. This work paves 
the way for scalable, intelligent test automation in dynamic 
development environments. 
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I. INTRODUCTION  

Flaky tests, characterized by their inconsistent behavior, 
passing or failing intermittently without changes to the 
underlying code, pose a significant challenge in modern 
software development. These unreliable tests undermine 
developer confidence in test results, disrupt continuous 
integration/continuous delivery (CI/CD) pipelines, and 
introduce inefficiencies in development workflows, resource 
utilization, and delivery timelines [1]. Flaky tests create false 
negatives, diverting developers from feature development and 
bug fixes while inflating computational costs and prolonging 
feedback loops. These inefficiencies delay software delivery, 
impacting industries like fintech and e-commerce with rapid 
iteration cycles, leading to financial losses and reduced customer 
satisfaction. Disabling flaky tests to avoid CI/CD interruptions 
risks letting real defects reach production, undermining trust in 
software reliability. 

To address these challenges, in this paper we introduce a 
novel framework for adaptive test healing that integrates 
Large Language Models (LLMs), such as GPT, with 
Reinforcement Learning (RL) to dynamically detect, analyze, 
and resolve test flakiness. By leveraging the natural language 
understanding capabilities of LLMs, the system can analyze 
unstructured data, such as test logs and error messages, to 
classify failures, identify root causes, and suggest potential 
remediation actions. These insights are then fed into an RL 
agent, which learns optimal strategies for addressing flaky tests 
through trial-and-error interactions with the test environment. 
The integration of LLMs and RL offers several advantages over 
traditional methods. LLMs enrich the state representation for RL 

by providing context-aware features derived from textual error 
data, enabling the RL agent to make more informed and adaptive 
decisions. The RL agent, in turn, optimizes the self-healing 
process by evaluating various actions, such as retries, parameter 
adjustments, or environment resets, and prioritizing those that 
yield the highest reward in terms of reducing test flakiness and 
improving efficiency. To demonstrate the effectiveness of this 
approach, we trained and evaluated the framework using a 
combination of synthetic flaky test scenarios and real-world test 
logs. Experimental results highlight significant improvements in 
test reliability, reduced debugging time, and overall CI/CD 
pipeline stability compared to traditional rule-based and static 
automation techniques. This work contributes to the evolving 
field of self-healing test automation by introducing a hybrid 
framework that combines the contextual power of LLMs with 
the decision-optimization capabilities of RL. The proposed 
framework not only addresses the current challenges of flaky 
tests but also establishes a foundation for scalable, adaptive, and 
intelligent test management in dynamic software development 
environments. 

II. BACKGROUND AND RELATED WORK 

The integration of Large Language Models (LLMs) and 
Reinforcement Learning (RL) into software testing has 
garnered significant attention, leading to various innovative 
approaches aimed at enhancing test automation and reliability. 
This section reviews pertinent literature, comparing existing 
methodologies with our proposed framework for adaptive test 
healing. 

A. Large Language Models in Software Testing 

LLMs, such as GPT, have demonstrated remarkable 
capabilities in understanding and generating human-like text, 
facilitating their application in software testing tasks. This 
article  [2] provides a comprehensive survey on the utilization 
of LLMs in software testing, highlighting their effectiveness in 
test case preparation and program repair. The study emphasizes 
that LLMs can automate the generation of test cases by 
comprehending natural language requirements and producing 
corresponding test scripts, thereby enhancing testing efficiency.  

Authors in [3] explore the practical applications of LLMs in 
software testing within industrial settings. Their findings 
indicate that LLMs significantly assist in tasks such as 
debugging and test case automation, supporting manual testers 
who may lack extensive coding expertise. However, the study 
also cautions about the current limitations of LLMs, 
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recommending cautious adoption while established methods and 
guidelines are developed. 

B. Reinforcement Learning in Software Testing 

RL has been applied to automate various aspects of software 
testing, particularly in generating high-quality test cases and 
optimizing testing processes. Authors in [4] introduce a 
technique called Reinforcement Learning from Static Quality 
Metrics (RLSQM), utilizing RL to generate unit tests that 
adhere to best practices. Their approach employs static 
analysis-based quality metrics to guide the RL agent, resulting 
in test cases with reduced anti-patterns and improved quality. 
This article [5] propose DRIFT, an RL framework for 
functional software testing that uses Q-learning and Graph 
Neural Networks. Applied to the Windows 10 operating 
system, DRIFT demonstrates the potential of RL in automating 
functional testing by efficiently triggering desired software 
functionalities in a fully automated manner.  

C. Combining LLMs and RL for Test Automation 

The convergence of LLMs and RL in software testing is an 
emerging area with limited but growing research. The 
integration of these technologies aims to leverage the strengths 
of both: LLMs' proficiency in natural language understanding 
and generation, and RL's capability to learn optimal strategies 
through interaction with the environment. Existing works in 
this area primarily focuses on creating frameworks that can 
generate and adapt test cases, optimize resource utilization, and 
dynamically improve through feedback loops. The potential 
application areas extend beyond software testing to include 
domains such as traffic signal control and other automation 
tasks requiring complex decision-making and adaptability. This 
paper [6] introduces the iLLM-TSC framework, which 
integrates LLMs with RL to improve traffic signal control 
policies. The framework utilizes the linguistic capabilities of 
LLMs to interpret and predict traffic scenarios, such as 
describing complex patterns in real-time traffic flow. 
Simultaneously, RL optimizes adaptive decision-making, 
dynamically adjusting traffic light timings based on feedback 
from the environment. This synergy demonstrates how the 
combination of LLMs and RL can enable intelligent automation 
by leveraging semantic insights and adaptive learning. The 
iLLM-TSC framework exemplifies how LLMs and RL can 
work together effectively. While RL optimizes policy actions 
through trial-and-error learning, LLMs handle semantic and 
contextual inputs, enhancing the system's ability to understand 
and adapt to real-world scenarios. Although this research 
focuses on traffic signal control, the underlying principles of 
integrating LLMs for contextual understanding and RL for 
decision-making are directly applicable to adaptive test 
automation. While existing research such as the iLLM-TSC 
framework showcases the potential of combining LLMs and RL 
in domains like traffic control, our approach focuses 
specifically on addressing flaky tests within software testing. 
Flaky tests introduce instability in continuous 
integration/continuous delivery (CI/CD) pipelines, causing 
inefficiencies and resource wastage. 
In our framework: 

 LLMs are employed to analyze unstructured data such as 
test logs and error messages, classifying failures and 
identifying root causes (e.g., timeout, network errors, 
dependency issues). 

 RL agents optimize self-healing actions, such as retries, 
parameter adjustments, or environment resets, 
dynamically improving the system's adaptability and 
reliability. 

While the iLLM-TSC framework leverages LLMs and RL for 
traffic scenarios, our work applies a similar synergistic 
principle to create a self-healing system tailored for test 
automation. This novel application addresses challenges unique 
to software testing, such as flaky test identification, adaptive 
recovery strategies, and optimization of testing resources. 
Our proposed framework distinguishes itself by combining 
LLMs and RL to address flaky tests through adaptive test 
healing. By analyzing unstructured data such as test logs and 
error messages, the LLM component provides context-aware 
insights that inform the RL agent's decision-making process. 
The RL agent learns optimal strategies for test retries, 
parameter adjustments, and environment resets, dynamically 
adapting to reduce test flakiness and enhance CI/CD pipeline 
stability. 

III. CASE STUDY SYSTEM: SOCIAL MEDIA-BASED LIFESTYLE 

APPLICATION 

In this research, we apply an adaptive healing technique to a 
social media-based lifestyle application designed to assist users 
in achieving health and fitness goals through community 
engagement and personalized coaching. Users join the platform 
via invitation and are grouped according to their specific 
objectives, such as weight loss, healthy eating, or weight 
maintenance. Each group is assigned a coach who monitors 
daily reports on eating and exercise habits, while an AI agent 
analyzes user behaviors to provide tailored recommendations to 
the coach. The application also facilitates social interactions, 
allowing users to post motivational content, share media, 
participate in group chats, and schedule one-on-one sessions 
with their coach. Additional features include AI-driven food 
image analysis for calorie estimation and daily notifications to 
keep users aligned with their goals. 

A. Software Architecture 

The application employs a modern, cloud-based architecture to 
ensure scalability, performance, and reliability. The front end is 
developed using React.js, providing a responsive user interface 
for functionalities such as user registration, group dashboards, 
chat features, and report submissions. The back end is built with 
Node.js, handling business logic, real-time communications, 
API integrations for AI services, and managing user 
interactions. Data is stored in a MySQL database, maintaining 
user profiles, group assignments, daily reports, AI-generated 
recommendations, and chat logs. Deployment is managed 
across various cloud platforms: the front end is hosted on 
Netlify, the back end on Heroku, and the database on AWS 
RDS, ensuring seamless integration and high availability. 
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B. Testing Strategy 

Given the application's complexity, a comprehensive testing 
strategy is essential to maintain quality and performance. The 
testing framework includes both unit and integration tests to 
verify individual components and their interactions within the 
system. Unit Testing: Unit tests focus on individual functions 
and methods within the application, ensuring that each 
component operates as intended in isolation. In line with 
industry practices, achieving a unit test coverage of 
approximately 70-80% is recommended for maintainability and 
early bug detection.  Integration Testing: Integration tests 
assess the interactions between combined components, 
verifying that they function together correctly. This level of 
testing is crucial for identifying issues that may arise from 
component integration, especially in complex applications with 
multiple interconnected services. The testing pyramid model 
emphasizes the importance of having a higher number of unit 
tests compared to integration tests, ensuring thorough 
validation at the component level before evaluating combined 
functionalities. Table 1 summarizes the number of tests for each 
major component of the case study system analyzed in this 
research. 
 
Table 1. Number of Unit and Integration Tests for Each Component 

of the Social Media-Based Lifestyle Application 

Component Functionality Unit 
Tests  

Integration 
Tests 

Front-End 
(React.js) 

User registration, login, authentication, Group 
dashboard, Report submission forms, Chat and 
video interfaces 

162 55 

Back-End 
(Node.js) 

API endpoints for user management, report 
processing, and AI integrations, Real-time 
chat and video, Business logic for group 
management, notifications 

219 79 

Database 
(MySQL) 

CRUD operations for user profiles, groups, 
and reports 
, Data integrity and constraints 
, Query generation for reports 

111 67 

AI Services Food image analysis for calorie estimation 
, User behavior analysis for recommendations 

145 71 

Notification 
System 

Sending daily reminders 
, Triggering alerts and updates 

71 32 

Total  708 304 

 

C. Managing Flaky Tests 

In large-scale applications, managing flaky tests, tests that 
produce inconsistent results without changes in the codebase, is 
vital for maintaining an efficient development workflow.  Flaky 
tests can undermine the reliability of the testing process, leading 
to false positives or negatives that impede development 
progress. Implementing adaptive healing techniques, such as 
the one explored in this study, can mitigate the impact of flaky 
tests by automatically detecting and addressing inconsistencies, 
thereby enhancing the robustness of the continuous integration 
and deployment pipeline. In conclusion, the social media-based 
lifestyle application presents a complex system requiring a 
robust testing strategy to ensure functionality and reliability. By 
implementing a comprehensive suite of unit and integration 
tests, and employing adaptive healing techniques to manage 
flaky tests, the development team can maintain high-quality 
standards and provide a seamless user experience. 

IV. PROBLEM STATEMENT: IMPACT OF FLAKY TESTS ON THE 

SYSTEM 

In the context of the social media-based lifestyle application 
described in this research, flaky tests pose a significant 
challenge, leading to wasted time, increased costs, and 
inefficiencies in the development and deployment process [1], 
[7], [8]. Flaky tests, those that produce inconsistent results 
without changes to the codebase, disrupt the reliability of 
Continuous Integration/Continuous Deployment (CI/CD) 
pipelines. These disruptions translate directly into financial and 
operational burdens for the organization. Flaky tests, which 
produce inconsistent results without changes to the codebase, 
present a significant challenge in the CI/CD pipeline of the 
social media-based lifestyle application, leading to wasted time, 
increased costs, and inefficiencies. With an estimated 900–
1,350 (currently 1,012 as per Table 1, though a range is used to 
account for ongoing changes) tests and a 5% flakiness rate, 45–
67 flaky tests per pipeline run demand manual debugging, 
delaying feedback loops and critical deployments. Our estimate 
showed these unreliable tests consume approximately 10% of 
developer time, equating to $2,000 per month in staffing costs 
(For this system , the development team consists of 3 full-time 
equivalent developers with a combined staffing cost of  
approximately $20,000 per month), while contributing to 15% 
additional pipeline reruns, adding $300 monthly to cloud 
expenses (For this system ,  our  cloud expenses, totaling 
approximately $2,000 per month). Annually, the combined 
cost of these inefficiencies reaches approximately $27,600, 
excluding intangible losses like delayed features, reduced 
customer satisfaction, and developer frustration. This not only 
undermines developer productivity but also risks delayed 
releases, potentially compromising system reliability and user 
satisfaction. Addressing these issues is crucial to optimizing 
costs, improving team efficiency, and ensuring timely delivery 
of features.  

V.  APPROACH OVERVIEW 

The diagram in Figure 1 illustrates a typical Continuous 
Integration/Continuous Deployment (CI/CD) pipeline, a 
generic process widely adopted by development teams to 
streamline software delivery.  

While the CI/CD pipeline itself represents a standard 
workflow for development, testing, deployment, and 
monitoring, the box labeled "Adaptive Healing using 
LLM/GPT and RL" introduces a novel approach proposed 
in this article. We proposed that this adaptive healing 
mechanism is seamlessly integrated into the CI/CD pipeline to 
dynamically detect, analyze, and resolve test failures, 
particularly focusing on flaky and transient issues, thus 
enhancing the overall pipeline reliability and efficiency. While 
CI/CD structures may vary slightly between teams, the pipeline 
depicted here assumes a generic setup for demonstrating the role 
of adaptive healing. 
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Figure 1: Overview:  Adaptive Healing in CI/CD Process 

1. Development: Developers commit changes to the source 
code repository. Each commit triggers the CI/CD pipeline to 
integrate, build, and test the new code. Test scenarios and 
requirements for each feature are pre-defined to ensure 
thorough coverage. 

2. Build: The pipeline compiles the source code, resolves 
dependencies, and packages the application. A successful 
build indicates that the codebase is stable enough to move to 
testing. 

3. Test with Adaptive Healing : The testing phase is consist  
of unit test and integration test.   

4. The adaptive healing process proposed in this article by 
shown in Figure 1, powered by LLMs (e.g., GPT) and 
Reinforcement Learning (RL), dynamically resolves 
issues that cause test failures, reducing disruptions in the 
pipeline. The healing mechanism intervenes when Unit 
Tests Fail, Failures are analyzed and addressed to allow 
progress to integration testing and when Integration Tests 
Fail,  Failures are analyzed and addressed to maintain overall 
system stability.  

5. The healing process generates three potential outcomes: 

Healed Unit Tests (Marked by (1) in Figure 1): If the 
healing mechanism successfully resolves unit test failures, 
the tests are marked as healed, and the pipeline progresses to 
the next phase. Healed Integration Tests (Marked by (2) 
in Figure 1): If the healing mechanism successfully resolves 
integration test failures, the tests are marked as healed, and 
the pipeline proceeds to deployment. Flagged Tests for 
Manual Intervention (Marked by (3) in Figure 1): If the 
adaptive healing mechanism cannot resolve a failure (e.g., 
due to persistent issues or exceeding retry limits), the test is 
flagged for manual intervention. Developers receive detailed 
logs and information on the failure and attempted 
resolutions. 

6. Deployment and Monitoring: Once tests pass, the 
application is deployed to the target environment (e.g., 
staging or production). Monitoring tools continuously 
observe system performance, ensuring smooth operations. 

VI. ADAPTIVE HEALING WITH LLM/GPT AND RL 

The diagram in Figure 2 illustrates the adaptive healing 
process for flaky tests, integrating the power of Large 

Language Models (LLMs)/GPT and Reinforcement 
Learning (RL). This proposed system dynamically identifies, 
classifies, and resolves test failures within a CI/CD pipeline, 
leveraging semantic analysis and decision-making optimization 
to enhance pipeline reliability and efficiency. Below is a step-
by-step explanation of the process: 

 

 

Figure 2: Overview of Adaptive Healing with LLM/GPT and RL 

Step 1: Test Failure Detected : The healing process begins 
when a test failure is detected during the CI/CD pipeline's 
execution. This failure could arise in unit tests, integration tests, 
or other stages of the pipeline. 
Step 2: Extract Error Logs and Test Data: Once a failure is 
detected, the system extracts relevant error logs and test 
execution data, including stack traces, error messages, and 
execution metrics. This data serves as the input for subsequent 
analysis and classification steps. 
Step 3: Analyze Logs : The extracted data is analyzed using an 
LLM (e.g., GPT) to interpret unstructured logs, identify 
patterns, and generate contextual insights. This step helps in 
identifying the probable cause of the failure, such as timeouts, 
dependency issues, or unknown errors. We discuss the details 
about this step in Section VII. 
Step 4: Classify Failure Type Using RL: Based on the insights 
from the LLM, the system transitions to an RL-based classifier 
that maps the failure to a specific state (e.g., timeout_exceeded, 
dependency_issue, unknown) and then it selects the best 
healing action (e.g., retrying the test, increasing timeouts, or 
resetting the environment) using a Q-table. The Q-table 
provides a learned mapping of states to actions, enabling the RL 
agent to make decisions that maximize the likelihood of 
resolving the failure. We explore this step in more details in 
Section VIII.  
Step 5: Execute the Test: The chosen healing action is 
executed, and the test is re-run to check if the failure has been 
resolved. 
Step 6: Update the Q-Table: After executing the action, the Q-
table is updated based on the reward received. If the action 
successfully resolves the failure, the agent receives a positive 
reward, reinforcing the selected action for similar future 
failures. If the failure persists, the reward is negative, prompting 
the agent to explore alternative strategies. 
Step 7: Test Passed? The system evaluates whether the test 
passes after the healing action. If the test passes: The failure is 
marked as healed, and the pipeline continues execution. If the 
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test fails: The system either retries another healing action (up 
to a predefined limit) or escalates the issue. 
Step 8: Exceed Healing Retry Limit: If the failure persists 
despite multiple healing attempts, the system flags the test for 
manual intervention. Detailed logs, along with information on 
attempted actions, are provided to developers to aid in 
debugging. 

VII. LOG ANALYSES USING LLM/GPT  

A. Why  Choose an LLM for Log Analysis? 

Large Language Models (LLMs) have revolutionized 
natural language processing (NLP) by demonstrating 
exceptional capabilities in understanding and generating human-
like text [8]. LLMs offer significant benefits for analyzing test 
logs by addressing the challenges of processing verbose, 
unstructured, and context-specific error messages. Their ability 
to handle unstructured data enables them to identify patterns and 
extract meaningful insights from complex logs. Leveraging 
extensive training on diverse datasets, LLMs provide semantic 
understanding, interpreting logs beyond surface-level keywords, 
such as recognizing that "Connection timed out after 30 
seconds" indicates a network issue. Their flexibility across 
domains allows LLMs to adapt to various types of logs, making 
them suitable for diverse testing environments. Additionally, 
LLMs automate insights by classifying failures, generating 
summaries, and suggesting potential resolutions, significantly 
reducing the need for manual log analysis and improving 
efficiency. 

B. Difference Between LLM and GPT 

While LLM is a broad term referring to any large-scale 
language model trained on extensive datasets, GPT 
(Generative Pre-trained Transformer) is a specific 
implementation of an LLM developed by OpenAI [9], [10]. 

 LLM: A general category encompassing a range of 
models like GPT, BERT, T5, and others. Focused on 
various tasks, including text classification, 
summarization, translation, and question-answering. 

 GPT: A specific family of transformer-based models 
(e.g., GPT-3, GPT-4). Pre-trained on massive datasets 
and fine-tuned for specific tasks, making it particularly 
adept at generating coherent and context-aware text. 

C. Why Use GPT in This Research? 

For this research, we chose GPT as the LLM due to its 
unique strengths [11], [12]. GPT models offer state-of-the-art 
performance in natural language processing tasks, including text 
generation, classification, and summarization, making them 
highly effective for analyzing diverse error logs. Their ability to 
generalize well to new tasks with minimal fine-tuning, known 
as few-shot and zero-shot learning, allows GPT to adapt 
seamlessly to new testing scenarios. Trained on a rich and 
diverse corpus of text, GPT is adept at understanding a wide 
range of technical error messages and their underlying contexts. 
Additionally, proven capabilities in debugging, as demonstrated 
by prior studies and implementations, highlight GPT's 
effectiveness in analyzing software logs and suggesting 
remediation strategies. By leveraging GPT, the system gains a 
sophisticated ability to process test logs and provide actionable 

insights, forming a robust foundation for the RL-based 
classification and healing process. 

D. Analyze Logs with LLM/GPT 

The Analyze Logs with LLM/GPT step is critical to the 
adaptive healing process, as it provides the necessary insights to 
classify failures and determine optimal actions. The process is 
as follows: 

Input: Error logs and test execution data are passed to the 
LLM/GPT module. These logs often include: Stack traces, Error 
messages, and Test configuration details 

Log Parsing and Preprocessing: Logs are preprocessed to 
remove noise (e.g., redundant information, timestamps) and 
structure the input for the LLM. For instance, error logs such as: 
“ERROR: Connection timed out after 30 seconds while 
accessing API endpoint.” are cleaned and standardized for better 
processing. 

Semantic Analysis with GPT: GPT processes the logs to: 

Classify Error Types: Identify if the issue is a timeout, 
dependency failure, network issue, etc. 

Summarize the Problem: Generate a concise summary of the 
failure (e.g., "Network timeout while accessing API"). 

Provide Contextual Recommendations: Suggest potential 
fixes or highlight areas to investigate further. 

Output: The LLM/GPT produces outputs such as: Error 
classification (e.g., "timeout_exceeded"), a textual explanation 
of the issue, and probable root causes or resolutions. For 
example: 

Input: "Error: Dependency X not found. Check if the package 
is installed." 

Output: Classification: dependency_issue. 

 Explanation: "The test failed due to a missing dependency 
(Dependency X)." 

 Recommendation: "Check if the required package is 
installed in the environment." 

VIII. CLASSIFY FAILURE TYPE USING RL 

After analyzing the test failure logs with the LLM/GPT, the 
system transitions to a Reinforcement Learning (RL)-based 
classifier to determine the best course of action for resolving the 
failure. This step builds on the semantic insights provided by the 
LLM and uses RL techniques to map failure types to optimal 
healing actions dynamically. The RL agent utilizes a Q-table, 
which evolves over time to improve decision-making based on 
feedback from previous actions. 

A. Mapping Failures to Specific States 

The RL agent begins by classifying the failure into a specific 
state based on the contextual insights provided by the LLM. 
Each failure type corresponds to a distinct state in the RL 
environment. Examples of states include: timeout_exceeded: 
Failures caused by insufficient timeouts during test execution. 
dependency_issue: Failures related to missing or incompatible 
dependencies in the test environment. unknown: Failures that 
cannot be easily classified into predefined categories. The 
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classification allows the RL agent to better understand the nature 
of the failure and select actions tailored to its resolution. 

B. Selecting Healing Actions Using the Q-Table 

Once the state is identified, the RL agent refers to its Q-table 
to decide on the best healing action. The Q-table represents the 
agent's knowledge of which actions are most effective for each 
state. Common healing actions include: 

Retrying the Test: Re-executing the test to see if the failure was 
transient. 

Increasing Timeouts: Adjusting timeout parameters to address 
delays in execution. 

Resetting the Environment: Reinitializing the test 
environment to resolve configuration or dependency issues. 

Skipping the Test: Skipping the test (used sparingly) if the 
failure persists despite multiple attempts. 

For the agent, we chose to implement an epsilon-greedy 
policy for decision-making: 

Exploration: Occasionally selects random actions to discover 
potentially better solutions. 

Exploitation: Selects the action with the highest Q-value in the 
Q-table for the current state. 

In reinforcement learning, the epsilon-greedy policy is a 
widely used exploration strategy that balances exploration and 
exploitation [13], [14]. The agent predominantly selects the 
action it believes to be optimal (exploitation) but occasionally 
chooses a random action (exploration) with a probability. This 
approach ensures that the agent explores the environment 
sufficiently to discover potentially better actions while 
exploiting known rewarding actions. 

C. Q-Table and Its Role in Decision-Making 

The Q-table is a matrix that maps states to actions, with each 
entry representing the expected utility (Q-value) of performing 
a specific action in a given state. Over time, the RL agent 
updates the Q-table based on the rewards it receives for its 
actions. The Q-learning formula is as follows: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾 ⋅ 𝑎𝑚𝑎𝑥𝑄(𝑠′, 𝑎) − 𝑄(𝑠, 𝑎)) 

Where: 

 𝑄(𝑠, 𝑎):Current Q-value for state 𝑠  and action 𝑎. 

 𝛼:  Learning rate (controls how much new information overrides old 
knowledge). 

 r: Reward received for the action. 

 γ:  Discount factor (weights the importance of future rewards). 

 𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎): Maximum Q-value for the next state 𝑠′ 
 

The formula for updating the Q-value in Q-learning is a 
well-established formula in the field of Reinforcement 
Learning (RL) and is derived from the Bellman Equation [15]. 
It is the cornerstone of model-free reinforcement learning 
techniques and is used to iteratively improve the agent's policy 
by learning the expected utility of actions in given states. The 
formula is designed to: 

Incorporate Immediate Rewards: By including 𝑟, the agent 
accounts for the direct consequences of its actions. 

Anticipate Future Rewards: By including 𝛾 ⋅ 𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎), 
the agent accounts for the long-term utility of its actions. 

Learn Incrementally: The learning rate 𝛼 controls how quickly 
the agent updates its knowledge, balancing new information 
with prior estimates. 

It enables the agent to learn the optimal policy over time by 
balancing immediate rewards with long-term gains. This 
foundational approach is widely used in RL-based systems to 
handle dynamic and complex decision-making tasks [16]. 

D. Example: Adaptive Healing with RL 

Scenario: The system encounters a “timeout exceeded” failure 
during test execution. 

1. State: “timeout exceeded” 

2. Q-table Before Action : for this example , the initial Q-
Table is shown in Table 2 

Table 2. Q-table Before Action 

State\Action retry Increase 
timeout 

Reset 
environment 

skip 

Timeout exceeded 0.3 0.8 0.1 -1 

Dependency issue 0.5 0.2 0.7 -1 
unknown 0.4 0.6 0.2 -1 

 

3. Decision: The RL agent selects the action increase timeout 
because it has the highest Q-value (0.8) for the state timeout 
exceeded. 

4. Execution: The agent increases the test timeout limit and re-
executes the test. 

5. Outcome: The test passes, and the agent receives a reward 
𝑟 =  +2  

6. Q-Table Update: Using the Q-learning formula, the agent 
updates the Q-value for “increase timeout” in the state 
“timeout_exceeded”. The updated Q-table is shown in Table 
3. 

Table 3. Updated Q-table 

State\Action retry Increase 
timeout 

Reset 
environment 

skip 

Timeout exceeded 0.3 1.0 0.1 -1 
Dependency issue 0.5 0.2 0.7 -1 

unknown 0.4 0.6 0.2 -1 

IX. RESULTS AND IMPROVEMENTS 

The adaptive healing approach has led to significant 
improvements in mitigating flaky test challenges within the 
social media-based lifestyle application. Before its 
implementation, the system averaged 50 flaky tests per pipeline 
run, disrupting CI/CD workflows and requiring extensive 
manual intervention. After adopting the adaptive healing 
technique, flaky tests dropped to 10 per run, representing an 
80% reduction. This improvement not only minimized false 
negatives but also enhanced the reliability of the test suite, 
streamlining processes and restoring developer confidence in the 
pipeline. The adaptive healing approach also significantly 
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reduced pipeline reruns caused by test flakiness. Previously, 
15% of pipelines required reruns, consuming computational 
resources and delaying developer feedback. After 
implementation, reruns dropped to 5%, enabling smoother, more 
predictable CI/CD workflows and reducing strain on cloud 
infrastructure. The adaptive healing approach significantly 
improved developer efficiency and reduced costs. Initially, 10% 
of developer time was wasted debugging flaky tests, 
investigating false failures, and re-triggering executions. This 
dropped to 2% after implementation, allowing developers to 
focus on core tasks, boosting productivity and morale. 
Additionally, cloud expenses for flaky test reruns dropped from 
$300 to $50 per month, an 83% reduction, resulting in 
substantial annual operational cost savings. Figure 3  shows the 
reduction in flaky tests and pipeline reruns, while Figure 4 
highlights cost savings  These results illustrate the effectiveness 
of the proposed solution in tackling the inefficiencies caused by 
flaky tests and underscore its value in enhancing the CI/CD 
pipeline's reliability and cost efficiency. 

X. IMPLEMENTATION OF THE ADAPTIVE HEALING APPROACH 

IN THE CI/CD PIPELINE 

The CI/CD pipeline for the social media-based lifestyle 
application is implemented entirely in the cloud, leveraging 
modern cloud-native tools and services.  

A. CI/CD Pipeline Implementation in the Cloud 

The CI/CD pipeline is built using GitHub Actions, a cloud-
based automation tool that orchestrates the build, test, and 
deployment processes. The pipeline consists of three key 
stages: In the Build Stage, the application’s front-end (React) 
and back-end (Node.js) code are compiled, dependencies are 
resolved, and static files are prepared using GitHub Actions' 
cloud runners, which provide scalable and isolated 
environments for building code. During the Test Stage, 
automated unit and integration tests are executed to validate the 
codebase, with logs and outputs from failed tests captured and 
stored in the cloud for further analysis. Finally, in the Deploy 
Stage, successful builds are deployed to cloud environments, 
with Netlify hosting the front-end for scalable delivery, Heroku 
managing the back-end application services, and AWS RDS 
(MySQL) storing application data, including user information 
and logs. This cloud-native pipeline ensures scalability, fault 
tolerance, and high availability while enabling seamless 
execution and monitoring through its integration with GitHub 
Actions. 

B. Implementation of the LLM Component 

The LLM module is deployed as a serverless function on AWS 
Lambda, ensuring resources are allocated only when needed, 
which keeps operational costs low. Communication between 
GitHub Actions and AWS Lambda is facilitated via API calls, 
enabling real-time log processing during pipeline execution. By 
providing semantic insights, the LLM ensures accurate failure 
classification, a critical factor for effective decision-making by 
the RL-Agent. 
 

C. Implementation of the RL-Agent 

Implemented in Python, the RL-Agent runs as a script within 
the GitHub Actions workflow and stores its Q-table and 
historical decision data in AWS RDS (MySQL) to maintain 
persistent learning across pipeline executions. Triggered 
immediately after the LLM completes log analysis, the RL-
Agent evaluates failure classifications and selects the most 
appropriate action, which is then executed by the pipeline to 
resolve test failures effectively. 

 

 

Figure 3. Reduction in Flaky Tests, Pipeline Reruns, and Developer 
Time After Adaptive Healing Implementation. 

 
Figure 4. Cost Comparison Before and After Applying the Proposed 

Approach 

D. Cost Analysis 

The cost analysis of implementing the adaptive healing 
approach includes both development expenses and ongoing 
operational costs. Development costs totaled $13,000, covering 
1 month of work by 2 developers at a combined monthly cost 
of $20,000 (equating to $13,000 for 2 developers). 
Additionally, $1,500 was spent on integrating and testing the 
LLM and RL components using the OpenAI API and AWS 
services. Ongoing operational costs include $1,000/month for 
OpenAI API usage for LLM log analysis and $500/month for 
cloud infrastructure, comprising $300/month for AWS 
Lambda (serverless execution) and $200/month for AWS RDS 
(MySQL) storage. This brings the total operational cost to 
$1,500/month, ensuring the system remains scalable and cost-
effective during ongoing usage. 
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E. Cost-Benefit Comparison 

The proposed adaptive healing approach demonstrates 
significant savings relative to its implementation costs. By 
reducing developer time spent debugging flaky tests from 10% 
to 2%, the system achieves an annual savings of $19,200 in 
staffing costs. Additionally, pipeline reruns caused by flaky 
tests were reduced from 15% to 5%, resulting in an annual 
savings of $3,000 in cloud expenses. These combined savings 
amount to $22,200 per year. With a total development cost of 
$14,500 ($13,000 for development and $1,500 for initial 
integration/testing), the system achieves a payback within a 
year and provides consistent annual savings thereafter. 

F. Evaluation Against Industry Standards 

The savings achieved by the adaptive healing approach, an 
annual reduction of $22,200 in operational and developer costs 
are notable when benchmarked against industry standards. 
Flaky tests are a common and costly problem in software 
development, often consuming 5–10% of developer time and 
causing significant resource wastage in CI/CD pipelines [1], 
[7], [8]. For mid-sized development teams like the one studied, 
these inefficiencies can lead to annual losses in the range of 
$50,000–$100,000. The proposed approach, by reducing 
developer time spent on flaky tests to 2% and minimizing 
pipeline reruns, provides a competitive edge by addressing 
these inefficiencies. Although the payback period of less than 
two years might appear modest in isolation, it is highly 
favorable compared to industry norms, where return on 
investment (ROI) for similar optimizations often takes few 
years. These results validate the practical value of the adaptive 
healing approach, positioning it as a cost-effective and 
impactful solution within the software engineering landscape. 

XI. CONCLUSION 

This paper introduces an adaptive healing technique combining 
Large Language Models (LLMs), such as GPT, with 
Reinforcement Learning (RL) to address flaky tests in CI/CD 
pipelines. Flaky tests, which produce inconsistent results 
without code changes, disrupt workflows and increase costs. 
The proposed method uses LLMs for semantic failure 
classification and RL for dynamic decision-making, 
significantly enhancing pipeline reliability and efficiency. 
Tested on a social media lifestyle app, the approach achieved 
remarkable outcomes: an 80% reduction in flaky tests per 
pipeline, a 66% decrease in reruns, and an 80% reduction in 
developer debugging time. These improvements translated into 
substantial financial benefits, including an 83% reduction in 
cloud costs and annual savings of $22,200, with a one-year 
payback period. The system integrates seamlessly into cloud-
native CI/CD pipelines using technologies like GitHub Actions, 
WS Lambda, and AWS RDS. Its scalable AI-driven framework 
suggests broader applications in software engineering, such as 
dynamic resource allocation and automated debugging. Future 
research could explore advanced LLMs, alternative RL models, 
and diverse use cases. In conclusion, this adaptive healing 
technique offers a scalable, cost-effective, and intelligent 

solution to flaky tests, advancing CI/CD reliability and opening 
pathways for innovation in testing automation and software 
reliability. 
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