
Adaptive Test Healing using LLM/GPT and
Reinforcement Learning

Nariman Mani, Salma Attaranasl
Engineering/R&D Department, Nutrosal Inc.

Ottawa, ON Canada
{nariman | salma}@research.nutrosal.com

Abstract— Flaky tests disrupt software development pipelines
by producing inconsistent results, undermining reliability and
efficiency. This paper introduces a hybrid framework for adaptive
test healing, combining Large Language Models (LLMs) like GPT
with Reinforcement Learning (RL) to address test flakiness
dynamically. LLMs analyze test logs to classify failures and
extract contextual insights, while the RL agent learns optimal
strategies for test retries, parameter tuning, and environment
resets. Experimental results demonstrate the framework's
effectiveness in reducing flakiness and improving CI/CD pipeline
stability, outperforming traditional approaches. This work paves
the way for scalable, intelligent test automation in dynamic
development environments.

Keywords— Adaptive Test Healing, Large Language Models
(LLMs), GPT, Reinforcement Learning (RL), Flaky Tests, Self-
Healing Test Automation, Continuous Integration (CI)

I. INTRODUCTION

Flaky tests, characterized by their inconsistent behavior,
passing or failing intermittently without changes to the
underlying code, pose a significant challenge in modern
software development. These unreliable tests undermine
developer confidence in test results, disrupt continuous
integration/continuous delivery (CI/CD) pipelines, and
introduce inefficiencies in development workflows, resource
utilization, and delivery timelines [1]. Flaky tests create false
negatives, diverting developers from feature development and
bug fixes while inflating computational costs and prolonging
feedback loops. These inefficiencies delay software delivery,
impacting industries like fintech and e-commerce with rapid
iteration cycles, leading to financial losses and reduced customer
satisfaction. Disabling flaky tests to avoid CI/CD interruptions
risks letting real defects reach production, undermining trust in
software reliability.

To address these challenges, in this paper we introduce a
novel framework for adaptive test healing that integrates
Large Language Models (LLMs), such as GPT, with
Reinforcement Learning (RL) to dynamically detect, analyze,
and resolve test flakiness. By leveraging the natural language
understanding capabilities of LLMs, the system can analyze
unstructured data, such as test logs and error messages, to
classify failures, identify root causes, and suggest potential
remediation actions. These insights are then fed into an RL
agent, which learns optimal strategies for addressing flaky tests
through trial-and-error interactions with the test environment.
The integration of LLMs and RL offers several advantages over
traditional methods. LLMs enrich the state representation for RL

by providing context-aware features derived from textual error
data, enabling the RL agent to make more informed and adaptive
decisions. The RL agent, in turn, optimizes the self-healing
process by evaluating various actions, such as retries, parameter
adjustments, or environment resets, and prioritizing those that
yield the highest reward in terms of reducing test flakiness and
improving efficiency. To demonstrate the effectiveness of this
approach, we trained and evaluated the framework using a
combination of synthetic flaky test scenarios and real-world test
logs. Experimental results highlight significant improvements in
test reliability, reduced debugging time, and overall CI/CD
pipeline stability compared to traditional rule-based and static
automation techniques. This work contributes to the evolving
field of self-healing test automation by introducing a hybrid
framework that combines the contextual power of LLMs with
the decision-optimization capabilities of RL. The proposed
framework not only addresses the current challenges of flaky
tests but also establishes a foundation for scalable, adaptive, and
intelligent test management in dynamic software development
environments.

II. BACKGROUND AND RELATED WORK

The integration of Large Language Models (LLMs) and
Reinforcement Learning (RL) into software testing has
garnered significant attention, leading to various innovative
approaches aimed at enhancing test automation and reliability.
This section reviews pertinent literature, comparing existing
methodologies with our proposed framework for adaptive test
healing.

A. Large Language Models in Software Testing

LLMs, such as GPT, have demonstrated remarkable
capabilities in understanding and generating human-like text,
facilitating their application in software testing tasks. This
article [2] provides a comprehensive survey on the utilization
of LLMs in software testing, highlighting their effectiveness in
test case preparation and program repair. The study emphasizes
that LLMs can automate the generation of test cases by
comprehending natural language requirements and producing
corresponding test scripts, thereby enhancing testing efficiency.

Authors in [3] explore the practical applications of LLMs in
software testing within industrial settings. Their findings
indicate that LLMs significantly assist in tasks such as
debugging and test case automation, supporting manual testers
who may lack extensive coding expertise. However, the study
also cautions about the current limitations of LLMs,

979-8-3315-3467-7/25/$31.00 © 2025 IEEE ICST Workshops 2025, Naples, Italy
AIST 2025

9

recommending cautious adoption while established methods and
guidelines are developed.

B. Reinforcement Learning in Software Testing

RL has been applied to automate various aspects of software
testing, particularly in generating high-quality test cases and
optimizing testing processes. Authors in [4] introduce a
technique called Reinforcement Learning from Static Quality
Metrics (RLSQM), utilizing RL to generate unit tests that
adhere to best practices. Their approach employs static
analysis-based quality metrics to guide the RL agent, resulting
in test cases with reduced anti-patterns and improved quality.
This article [5] propose DRIFT, an RL framework for
functional software testing that uses Q-learning and Graph
Neural Networks. Applied to the Windows 10 operating
system, DRIFT demonstrates the potential of RL in automating
functional testing by efficiently triggering desired software
functionalities in a fully automated manner.

C. Combining LLMs and RL for Test Automation

The convergence of LLMs and RL in software testing is an
emerging area with limited but growing research. The
integration of these technologies aims to leverage the strengths
of both: LLMs' proficiency in natural language understanding
and generation, and RL's capability to learn optimal strategies
through interaction with the environment. Existing works in
this area primarily focuses on creating frameworks that can
generate and adapt test cases, optimize resource utilization, and
dynamically improve through feedback loops. The potential
application areas extend beyond software testing to include
domains such as traffic signal control and other automation
tasks requiring complex decision-making and adaptability. This
paper [6] introduces the iLLM-TSC framework, which
integrates LLMs with RL to improve traffic signal control
policies. The framework utilizes the linguistic capabilities of
LLMs to interpret and predict traffic scenarios, such as
describing complex patterns in real-time traffic flow.
Simultaneously, RL optimizes adaptive decision-making,
dynamically adjusting traffic light timings based on feedback
from the environment. This synergy demonstrates how the
combination of LLMs and RL can enable intelligent automation
by leveraging semantic insights and adaptive learning. The
iLLM-TSC framework exemplifies how LLMs and RL can
work together effectively. While RL optimizes policy actions
through trial-and-error learning, LLMs handle semantic and
contextual inputs, enhancing the system's ability to understand
and adapt to real-world scenarios. Although this research
focuses on traffic signal control, the underlying principles of
integrating LLMs for contextual understanding and RL for
decision-making are directly applicable to adaptive test
automation. While existing research such as the iLLM-TSC
framework showcases the potential of combining LLMs and RL
in domains like traffic control, our approach focuses
specifically on addressing flaky tests within software testing.
Flaky tests introduce instability in continuous
integration/continuous delivery (CI/CD) pipelines, causing
inefficiencies and resource wastage.
In our framework:

 LLMs are employed to analyze unstructured data such as
test logs and error messages, classifying failures and
identifying root causes (e.g., timeout, network errors,
dependency issues).

 RL agents optimize self-healing actions, such as retries,
parameter adjustments, or environment resets,
dynamically improving the system's adaptability and
reliability.

While the iLLM-TSC framework leverages LLMs and RL for
traffic scenarios, our work applies a similar synergistic
principle to create a self-healing system tailored for test
automation. This novel application addresses challenges unique
to software testing, such as flaky test identification, adaptive
recovery strategies, and optimization of testing resources.
Our proposed framework distinguishes itself by combining
LLMs and RL to address flaky tests through adaptive test
healing. By analyzing unstructured data such as test logs and
error messages, the LLM component provides context-aware
insights that inform the RL agent's decision-making process.
The RL agent learns optimal strategies for test retries,
parameter adjustments, and environment resets, dynamically
adapting to reduce test flakiness and enhance CI/CD pipeline
stability.

III. CASE STUDY SYSTEM: SOCIAL MEDIA-BASED LIFESTYLE

APPLICATION

In this research, we apply an adaptive healing technique to a
social media-based lifestyle application designed to assist users
in achieving health and fitness goals through community
engagement and personalized coaching. Users join the platform
via invitation and are grouped according to their specific
objectives, such as weight loss, healthy eating, or weight
maintenance. Each group is assigned a coach who monitors
daily reports on eating and exercise habits, while an AI agent
analyzes user behaviors to provide tailored recommendations to
the coach. The application also facilitates social interactions,
allowing users to post motivational content, share media,
participate in group chats, and schedule one-on-one sessions
with their coach. Additional features include AI-driven food
image analysis for calorie estimation and daily notifications to
keep users aligned with their goals.

A. Software Architecture

The application employs a modern, cloud-based architecture to
ensure scalability, performance, and reliability. The front end is
developed using React.js, providing a responsive user interface
for functionalities such as user registration, group dashboards,
chat features, and report submissions. The back end is built with
Node.js, handling business logic, real-time communications,
API integrations for AI services, and managing user
interactions. Data is stored in a MySQL database, maintaining
user profiles, group assignments, daily reports, AI-generated
recommendations, and chat logs. Deployment is managed
across various cloud platforms: the front end is hosted on
Netlify, the back end on Heroku, and the database on AWS
RDS, ensuring seamless integration and high availability.

10

B. Testing Strategy

Given the application's complexity, a comprehensive testing
strategy is essential to maintain quality and performance. The
testing framework includes both unit and integration tests to
verify individual components and their interactions within the
system. Unit Testing: Unit tests focus on individual functions
and methods within the application, ensuring that each
component operates as intended in isolation. In line with
industry practices, achieving a unit test coverage of
approximately 70-80% is recommended for maintainability and
early bug detection. Integration Testing: Integration tests
assess the interactions between combined components,
verifying that they function together correctly. This level of
testing is crucial for identifying issues that may arise from
component integration, especially in complex applications with
multiple interconnected services. The testing pyramid model
emphasizes the importance of having a higher number of unit
tests compared to integration tests, ensuring thorough
validation at the component level before evaluating combined
functionalities. Table 1 summarizes the number of tests for each
major component of the case study system analyzed in this
research.

Table 1. Number of Unit and Integration Tests for Each Component

of the Social Media-Based Lifestyle Application

Component Functionality Unit
Tests

Integration
Tests

Front-End
(React.js)

User registration, login, authentication, Group
dashboard, Report submission forms, Chat and
video interfaces

162 55

Back-End
(Node.js)

API endpoints for user management, report
processing, and AI integrations, Real-time
chat and video, Business logic for group
management, notifications

219 79

Database
(MySQL)

CRUD operations for user profiles, groups,
and reports
, Data integrity and constraints
, Query generation for reports

111 67

AI Services Food image analysis for calorie estimation
, User behavior analysis for recommendations

145 71

Notification
System

Sending daily reminders
, Triggering alerts and updates

71 32

Total 708 304

C. Managing Flaky Tests

In large-scale applications, managing flaky tests, tests that
produce inconsistent results without changes in the codebase, is
vital for maintaining an efficient development workflow. Flaky
tests can undermine the reliability of the testing process, leading
to false positives or negatives that impede development
progress. Implementing adaptive healing techniques, such as
the one explored in this study, can mitigate the impact of flaky
tests by automatically detecting and addressing inconsistencies,
thereby enhancing the robustness of the continuous integration
and deployment pipeline. In conclusion, the social media-based
lifestyle application presents a complex system requiring a
robust testing strategy to ensure functionality and reliability. By
implementing a comprehensive suite of unit and integration
tests, and employing adaptive healing techniques to manage
flaky tests, the development team can maintain high-quality
standards and provide a seamless user experience.

IV. PROBLEM STATEMENT: IMPACT OF FLAKY TESTS ON THE

SYSTEM

In the context of the social media-based lifestyle application
described in this research, flaky tests pose a significant
challenge, leading to wasted time, increased costs, and
inefficiencies in the development and deployment process [1],
[7], [8]. Flaky tests, those that produce inconsistent results
without changes to the codebase, disrupt the reliability of
Continuous Integration/Continuous Deployment (CI/CD)
pipelines. These disruptions translate directly into financial and
operational burdens for the organization. Flaky tests, which
produce inconsistent results without changes to the codebase,
present a significant challenge in the CI/CD pipeline of the
social media-based lifestyle application, leading to wasted time,
increased costs, and inefficiencies. With an estimated 900–
1,350 (currently 1,012 as per Table 1, though a range is used to
account for ongoing changes) tests and a 5% flakiness rate, 45–
67 flaky tests per pipeline run demand manual debugging,
delaying feedback loops and critical deployments. Our estimate
showed these unreliable tests consume approximately 10% of
developer time, equating to $2,000 per month in staffing costs
(For this system , the development team consists of 3 full-time
equivalent developers with a combined staffing cost of
approximately $20,000 per month), while contributing to 15%
additional pipeline reruns, adding $300 monthly to cloud
expenses (For this system , our cloud expenses, totaling
approximately $2,000 per month). Annually, the combined
cost of these inefficiencies reaches approximately $27,600,
excluding intangible losses like delayed features, reduced
customer satisfaction, and developer frustration. This not only
undermines developer productivity but also risks delayed
releases, potentially compromising system reliability and user
satisfaction. Addressing these issues is crucial to optimizing
costs, improving team efficiency, and ensuring timely delivery
of features.

V. APPROACH OVERVIEW

The diagram in Figure 1 illustrates a typical Continuous
Integration/Continuous Deployment (CI/CD) pipeline, a
generic process widely adopted by development teams to
streamline software delivery.

While the CI/CD pipeline itself represents a standard
workflow for development, testing, deployment, and
monitoring, the box labeled "Adaptive Healing using
LLM/GPT and RL" introduces a novel approach proposed
in this article. We proposed that this adaptive healing
mechanism is seamlessly integrated into the CI/CD pipeline to
dynamically detect, analyze, and resolve test failures,
particularly focusing on flaky and transient issues, thus
enhancing the overall pipeline reliability and efficiency. While
CI/CD structures may vary slightly between teams, the pipeline
depicted here assumes a generic setup for demonstrating the role
of adaptive healing.

11

Figure 1: Overview: Adaptive Healing in CI/CD Process

1. Development: Developers commit changes to the source
code repository. Each commit triggers the CI/CD pipeline to
integrate, build, and test the new code. Test scenarios and
requirements for each feature are pre-defined to ensure
thorough coverage.

2. Build: The pipeline compiles the source code, resolves
dependencies, and packages the application. A successful
build indicates that the codebase is stable enough to move to
testing.

3. Test with Adaptive Healing : The testing phase is consist
of unit test and integration test.

4. The adaptive healing process proposed in this article by
shown in Figure 1, powered by LLMs (e.g., GPT) and
Reinforcement Learning (RL), dynamically resolves
issues that cause test failures, reducing disruptions in the
pipeline. The healing mechanism intervenes when Unit
Tests Fail, Failures are analyzed and addressed to allow
progress to integration testing and when Integration Tests
Fail, Failures are analyzed and addressed to maintain overall
system stability.

5. The healing process generates three potential outcomes:

Healed Unit Tests (Marked by (1) in Figure 1): If the
healing mechanism successfully resolves unit test failures,
the tests are marked as healed, and the pipeline progresses to
the next phase. Healed Integration Tests (Marked by (2)
in Figure 1): If the healing mechanism successfully resolves
integration test failures, the tests are marked as healed, and
the pipeline proceeds to deployment. Flagged Tests for
Manual Intervention (Marked by (3) in Figure 1): If the
adaptive healing mechanism cannot resolve a failure (e.g.,
due to persistent issues or exceeding retry limits), the test is
flagged for manual intervention. Developers receive detailed
logs and information on the failure and attempted
resolutions.

6. Deployment and Monitoring: Once tests pass, the
application is deployed to the target environment (e.g.,
staging or production). Monitoring tools continuously
observe system performance, ensuring smooth operations.

VI. ADAPTIVE HEALING WITH LLM/GPT AND RL

The diagram in Figure 2 illustrates the adaptive healing
process for flaky tests, integrating the power of Large

Language Models (LLMs)/GPT and Reinforcement
Learning (RL). This proposed system dynamically identifies,
classifies, and resolves test failures within a CI/CD pipeline,
leveraging semantic analysis and decision-making optimization
to enhance pipeline reliability and efficiency. Below is a step-
by-step explanation of the process:

Figure 2: Overview of Adaptive Healing with LLM/GPT and RL

Step 1: Test Failure Detected : The healing process begins
when a test failure is detected during the CI/CD pipeline's
execution. This failure could arise in unit tests, integration tests,
or other stages of the pipeline.
Step 2: Extract Error Logs and Test Data: Once a failure is
detected, the system extracts relevant error logs and test
execution data, including stack traces, error messages, and
execution metrics. This data serves as the input for subsequent
analysis and classification steps.
Step 3: Analyze Logs : The extracted data is analyzed using an
LLM (e.g., GPT) to interpret unstructured logs, identify
patterns, and generate contextual insights. This step helps in
identifying the probable cause of the failure, such as timeouts,
dependency issues, or unknown errors. We discuss the details
about this step in Section VII.
Step 4: Classify Failure Type Using RL: Based on the insights
from the LLM, the system transitions to an RL-based classifier
that maps the failure to a specific state (e.g., timeout_exceeded,
dependency_issue, unknown) and then it selects the best
healing action (e.g., retrying the test, increasing timeouts, or
resetting the environment) using a Q-table. The Q-table
provides a learned mapping of states to actions, enabling the RL
agent to make decisions that maximize the likelihood of
resolving the failure. We explore this step in more details in
Section VIII.
Step 5: Execute the Test: The chosen healing action is
executed, and the test is re-run to check if the failure has been
resolved.
Step 6: Update the Q-Table: After executing the action, the Q-
table is updated based on the reward received. If the action
successfully resolves the failure, the agent receives a positive
reward, reinforcing the selected action for similar future
failures. If the failure persists, the reward is negative, prompting
the agent to explore alternative strategies.
Step 7: Test Passed? The system evaluates whether the test
passes after the healing action. If the test passes: The failure is
marked as healed, and the pipeline continues execution. If the

12

test fails: The system either retries another healing action (up
to a predefined limit) or escalates the issue.
Step 8: Exceed Healing Retry Limit: If the failure persists
despite multiple healing attempts, the system flags the test for
manual intervention. Detailed logs, along with information on
attempted actions, are provided to developers to aid in
debugging.

VII. LOG ANALYSES USING LLM/GPT

A. Why Choose an LLM for Log Analysis?

Large Language Models (LLMs) have revolutionized
natural language processing (NLP) by demonstrating
exceptional capabilities in understanding and generating human-
like text [8]. LLMs offer significant benefits for analyzing test
logs by addressing the challenges of processing verbose,
unstructured, and context-specific error messages. Their ability
to handle unstructured data enables them to identify patterns and
extract meaningful insights from complex logs. Leveraging
extensive training on diverse datasets, LLMs provide semantic
understanding, interpreting logs beyond surface-level keywords,
such as recognizing that "Connection timed out after 30
seconds" indicates a network issue. Their flexibility across
domains allows LLMs to adapt to various types of logs, making
them suitable for diverse testing environments. Additionally,
LLMs automate insights by classifying failures, generating
summaries, and suggesting potential resolutions, significantly
reducing the need for manual log analysis and improving
efficiency.

B. Difference Between LLM and GPT

While LLM is a broad term referring to any large-scale
language model trained on extensive datasets, GPT
(Generative Pre-trained Transformer) is a specific
implementation of an LLM developed by OpenAI [9], [10].

 LLM: A general category encompassing a range of
models like GPT, BERT, T5, and others. Focused on
various tasks, including text classification,
summarization, translation, and question-answering.

 GPT: A specific family of transformer-based models
(e.g., GPT-3, GPT-4). Pre-trained on massive datasets
and fine-tuned for specific tasks, making it particularly
adept at generating coherent and context-aware text.

C. Why Use GPT in This Research?

For this research, we chose GPT as the LLM due to its
unique strengths [11], [12]. GPT models offer state-of-the-art
performance in natural language processing tasks, including text
generation, classification, and summarization, making them
highly effective for analyzing diverse error logs. Their ability to
generalize well to new tasks with minimal fine-tuning, known
as few-shot and zero-shot learning, allows GPT to adapt
seamlessly to new testing scenarios. Trained on a rich and
diverse corpus of text, GPT is adept at understanding a wide
range of technical error messages and their underlying contexts.
Additionally, proven capabilities in debugging, as demonstrated
by prior studies and implementations, highlight GPT's
effectiveness in analyzing software logs and suggesting
remediation strategies. By leveraging GPT, the system gains a
sophisticated ability to process test logs and provide actionable

insights, forming a robust foundation for the RL-based
classification and healing process.

D. Analyze Logs with LLM/GPT

The Analyze Logs with LLM/GPT step is critical to the
adaptive healing process, as it provides the necessary insights to
classify failures and determine optimal actions. The process is
as follows:

Input: Error logs and test execution data are passed to the
LLM/GPT module. These logs often include: Stack traces, Error
messages, and Test configuration details

Log Parsing and Preprocessing: Logs are preprocessed to
remove noise (e.g., redundant information, timestamps) and
structure the input for the LLM. For instance, error logs such as:
“ERROR: Connection timed out after 30 seconds while
accessing API endpoint.” are cleaned and standardized for better
processing.

Semantic Analysis with GPT: GPT processes the logs to:

Classify Error Types: Identify if the issue is a timeout,
dependency failure, network issue, etc.

Summarize the Problem: Generate a concise summary of the
failure (e.g., "Network timeout while accessing API").

Provide Contextual Recommendations: Suggest potential
fixes or highlight areas to investigate further.

Output: The LLM/GPT produces outputs such as: Error
classification (e.g., "timeout_exceeded"), a textual explanation
of the issue, and probable root causes or resolutions. For
example:

Input: "Error: Dependency X not found. Check if the package
is installed."

Output: Classification: dependency_issue.

 Explanation: "The test failed due to a missing dependency
(Dependency X)."

 Recommendation: "Check if the required package is
installed in the environment."

VIII. CLASSIFY FAILURE TYPE USING RL

After analyzing the test failure logs with the LLM/GPT, the
system transitions to a Reinforcement Learning (RL)-based
classifier to determine the best course of action for resolving the
failure. This step builds on the semantic insights provided by the
LLM and uses RL techniques to map failure types to optimal
healing actions dynamically. The RL agent utilizes a Q-table,
which evolves over time to improve decision-making based on
feedback from previous actions.

A. Mapping Failures to Specific States

The RL agent begins by classifying the failure into a specific
state based on the contextual insights provided by the LLM.
Each failure type corresponds to a distinct state in the RL
environment. Examples of states include: timeout_exceeded:
Failures caused by insufficient timeouts during test execution.
dependency_issue: Failures related to missing or incompatible
dependencies in the test environment. unknown: Failures that
cannot be easily classified into predefined categories. The

13

classification allows the RL agent to better understand the nature
of the failure and select actions tailored to its resolution.

B. Selecting Healing Actions Using the Q-Table

Once the state is identified, the RL agent refers to its Q-table
to decide on the best healing action. The Q-table represents the
agent's knowledge of which actions are most effective for each
state. Common healing actions include:

Retrying the Test: Re-executing the test to see if the failure was
transient.

Increasing Timeouts: Adjusting timeout parameters to address
delays in execution.

Resetting the Environment: Reinitializing the test
environment to resolve configuration or dependency issues.

Skipping the Test: Skipping the test (used sparingly) if the
failure persists despite multiple attempts.

For the agent, we chose to implement an epsilon-greedy
policy for decision-making:

Exploration: Occasionally selects random actions to discover
potentially better solutions.

Exploitation: Selects the action with the highest Q-value in the
Q-table for the current state.

In reinforcement learning, the epsilon-greedy policy is a
widely used exploration strategy that balances exploration and
exploitation [13], [14]. The agent predominantly selects the
action it believes to be optimal (exploitation) but occasionally
chooses a random action (exploration) with a probability. This
approach ensures that the agent explores the environment
sufficiently to discover potentially better actions while
exploiting known rewarding actions.

C. Q-Table and Its Role in Decision-Making

The Q-table is a matrix that maps states to actions, with each
entry representing the expected utility (Q-value) of performing
a specific action in a given state. Over time, the RL agent
updates the Q-table based on the rewards it receives for its
actions. The Q-learning formula is as follows:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾 ⋅ 𝑎𝑚𝑎𝑥𝑄(𝑠′, 𝑎) − 𝑄(𝑠, 𝑎))

Where:

 𝑄(𝑠, 𝑎):Current Q-value for state 𝑠 and action 𝑎.

 𝛼: Learning rate (controls how much new information overrides old
knowledge).

 r: Reward received for the action.

 γ: Discount factor (weights the importance of future rewards).

 𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎): Maximum Q-value for the next state 𝑠′

The formula for updating the Q-value in Q-learning is a
well-established formula in the field of Reinforcement
Learning (RL) and is derived from the Bellman Equation [15].
It is the cornerstone of model-free reinforcement learning
techniques and is used to iteratively improve the agent's policy
by learning the expected utility of actions in given states. The
formula is designed to:

Incorporate Immediate Rewards: By including 𝑟, the agent
accounts for the direct consequences of its actions.

Anticipate Future Rewards: By including 𝛾 ⋅ 𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎),
the agent accounts for the long-term utility of its actions.

Learn Incrementally: The learning rate 𝛼 controls how quickly
the agent updates its knowledge, balancing new information
with prior estimates.

It enables the agent to learn the optimal policy over time by
balancing immediate rewards with long-term gains. This
foundational approach is widely used in RL-based systems to
handle dynamic and complex decision-making tasks [16].

D. Example: Adaptive Healing with RL

Scenario: The system encounters a “timeout exceeded” failure
during test execution.

1. State: “timeout exceeded”

2. Q-table Before Action : for this example , the initial Q-
Table is shown in Table 2

Table 2. Q-table Before Action

State\Action retry Increase
timeout

Reset
environment

skip

Timeout exceeded 0.3 0.8 0.1 -1

Dependency issue 0.5 0.2 0.7 -1
unknown 0.4 0.6 0.2 -1

3. Decision: The RL agent selects the action increase timeout
because it has the highest Q-value (0.8) for the state timeout
exceeded.

4. Execution: The agent increases the test timeout limit and re-
executes the test.

5. Outcome: The test passes, and the agent receives a reward
𝑟 = +2

6. Q-Table Update: Using the Q-learning formula, the agent
updates the Q-value for “increase timeout” in the state
“timeout_exceeded”. The updated Q-table is shown in Table
3.

Table 3. Updated Q-table

State\Action retry Increase
timeout

Reset
environment

skip

Timeout exceeded 0.3 1.0 0.1 -1
Dependency issue 0.5 0.2 0.7 -1

unknown 0.4 0.6 0.2 -1

IX. RESULTS AND IMPROVEMENTS

The adaptive healing approach has led to significant
improvements in mitigating flaky test challenges within the
social media-based lifestyle application. Before its
implementation, the system averaged 50 flaky tests per pipeline
run, disrupting CI/CD workflows and requiring extensive
manual intervention. After adopting the adaptive healing
technique, flaky tests dropped to 10 per run, representing an
80% reduction. This improvement not only minimized false
negatives but also enhanced the reliability of the test suite,
streamlining processes and restoring developer confidence in the
pipeline. The adaptive healing approach also significantly

14

reduced pipeline reruns caused by test flakiness. Previously,
15% of pipelines required reruns, consuming computational
resources and delaying developer feedback. After
implementation, reruns dropped to 5%, enabling smoother, more
predictable CI/CD workflows and reducing strain on cloud
infrastructure. The adaptive healing approach significantly
improved developer efficiency and reduced costs. Initially, 10%
of developer time was wasted debugging flaky tests,
investigating false failures, and re-triggering executions. This
dropped to 2% after implementation, allowing developers to
focus on core tasks, boosting productivity and morale.
Additionally, cloud expenses for flaky test reruns dropped from
$300 to $50 per month, an 83% reduction, resulting in
substantial annual operational cost savings. Figure 3 shows the
reduction in flaky tests and pipeline reruns, while Figure 4
highlights cost savings These results illustrate the effectiveness
of the proposed solution in tackling the inefficiencies caused by
flaky tests and underscore its value in enhancing the CI/CD
pipeline's reliability and cost efficiency.

X. IMPLEMENTATION OF THE ADAPTIVE HEALING APPROACH

IN THE CI/CD PIPELINE

The CI/CD pipeline for the social media-based lifestyle
application is implemented entirely in the cloud, leveraging
modern cloud-native tools and services.

A. CI/CD Pipeline Implementation in the Cloud

The CI/CD pipeline is built using GitHub Actions, a cloud-
based automation tool that orchestrates the build, test, and
deployment processes. The pipeline consists of three key
stages: In the Build Stage, the application’s front-end (React)
and back-end (Node.js) code are compiled, dependencies are
resolved, and static files are prepared using GitHub Actions'
cloud runners, which provide scalable and isolated
environments for building code. During the Test Stage,
automated unit and integration tests are executed to validate the
codebase, with logs and outputs from failed tests captured and
stored in the cloud for further analysis. Finally, in the Deploy
Stage, successful builds are deployed to cloud environments,
with Netlify hosting the front-end for scalable delivery, Heroku
managing the back-end application services, and AWS RDS
(MySQL) storing application data, including user information
and logs. This cloud-native pipeline ensures scalability, fault
tolerance, and high availability while enabling seamless
execution and monitoring through its integration with GitHub
Actions.

B. Implementation of the LLM Component

The LLM module is deployed as a serverless function on AWS
Lambda, ensuring resources are allocated only when needed,
which keeps operational costs low. Communication between
GitHub Actions and AWS Lambda is facilitated via API calls,
enabling real-time log processing during pipeline execution. By
providing semantic insights, the LLM ensures accurate failure
classification, a critical factor for effective decision-making by
the RL-Agent.

C. Implementation of the RL-Agent

Implemented in Python, the RL-Agent runs as a script within
the GitHub Actions workflow and stores its Q-table and
historical decision data in AWS RDS (MySQL) to maintain
persistent learning across pipeline executions. Triggered
immediately after the LLM completes log analysis, the RL-
Agent evaluates failure classifications and selects the most
appropriate action, which is then executed by the pipeline to
resolve test failures effectively.

Figure 3. Reduction in Flaky Tests, Pipeline Reruns, and Developer
Time After Adaptive Healing Implementation.

Figure 4. Cost Comparison Before and After Applying the Proposed

Approach

D. Cost Analysis

The cost analysis of implementing the adaptive healing
approach includes both development expenses and ongoing
operational costs. Development costs totaled $13,000, covering
1 month of work by 2 developers at a combined monthly cost
of $20,000 (equating to $13,000 for 2 developers).
Additionally, $1,500 was spent on integrating and testing the
LLM and RL components using the OpenAI API and AWS
services. Ongoing operational costs include $1,000/month for
OpenAI API usage for LLM log analysis and $500/month for
cloud infrastructure, comprising $300/month for AWS
Lambda (serverless execution) and $200/month for AWS RDS
(MySQL) storage. This brings the total operational cost to
$1,500/month, ensuring the system remains scalable and cost-
effective during ongoing usage.

15

E. Cost-Benefit Comparison

The proposed adaptive healing approach demonstrates
significant savings relative to its implementation costs. By
reducing developer time spent debugging flaky tests from 10%
to 2%, the system achieves an annual savings of $19,200 in
staffing costs. Additionally, pipeline reruns caused by flaky
tests were reduced from 15% to 5%, resulting in an annual
savings of $3,000 in cloud expenses. These combined savings
amount to $22,200 per year. With a total development cost of
$14,500 ($13,000 for development and $1,500 for initial
integration/testing), the system achieves a payback within a
year and provides consistent annual savings thereafter.

F. Evaluation Against Industry Standards

The savings achieved by the adaptive healing approach, an
annual reduction of $22,200 in operational and developer costs
are notable when benchmarked against industry standards.
Flaky tests are a common and costly problem in software
development, often consuming 5–10% of developer time and
causing significant resource wastage in CI/CD pipelines [1],
[7], [8]. For mid-sized development teams like the one studied,
these inefficiencies can lead to annual losses in the range of
$50,000–$100,000. The proposed approach, by reducing
developer time spent on flaky tests to 2% and minimizing
pipeline reruns, provides a competitive edge by addressing
these inefficiencies. Although the payback period of less than
two years might appear modest in isolation, it is highly
favorable compared to industry norms, where return on
investment (ROI) for similar optimizations often takes few
years. These results validate the practical value of the adaptive
healing approach, positioning it as a cost-effective and
impactful solution within the software engineering landscape.

XI. CONCLUSION

This paper introduces an adaptive healing technique combining
Large Language Models (LLMs), such as GPT, with
Reinforcement Learning (RL) to address flaky tests in CI/CD
pipelines. Flaky tests, which produce inconsistent results
without code changes, disrupt workflows and increase costs.
The proposed method uses LLMs for semantic failure
classification and RL for dynamic decision-making,
significantly enhancing pipeline reliability and efficiency.
Tested on a social media lifestyle app, the approach achieved
remarkable outcomes: an 80% reduction in flaky tests per
pipeline, a 66% decrease in reruns, and an 80% reduction in
developer debugging time. These improvements translated into
substantial financial benefits, including an 83% reduction in
cloud costs and annual savings of $22,200, with a one-year
payback period. The system integrates seamlessly into cloud-
native CI/CD pipelines using technologies like GitHub Actions,
WS Lambda, and AWS RDS. Its scalable AI-driven framework
suggests broader applications in software engineering, such as
dynamic resource allocation and automated debugging. Future
research could explore advanced LLMs, alternative RL models,
and diverse use cases. In conclusion, this adaptive healing
technique offers a scalable, cost-effective, and intelligent

solution to flaky tests, advancing CI/CD reliability and opening
pathways for innovation in testing automation and software
reliability.

REFERENCES
[1] F. Leinen, D. Elsner, A. Pretschner, A. Stahlbauer, M. Sailer, and E.

Jürgens, “Cost of Flaky Tests in Continuous Integration: An Industrial
Case Study,” in 2024 IEEE Conference on Software Testing, Verification
and Validation (ICST), Toronto, ON, Canada: IEEE, May 2024, pp. 329–
340. doi: 10.1109/ICST60714.2024.00037.

[2] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software
Testing With Large Language Models: Survey, Landscape, and Vision,”
IIEEE Trans. Software Eng., vol. 50, no. 4, pp. 911–936, Apr. 2024, doi:
10.1109/TSE.2024.3368208.

[3] R. Santos, I. Santos, C. Magalhaes, and R. De Souza Santos, “Are We
Testing or Being Tested? Exploring the Practical Applications of Large
Language Models in Software Testing,” in 2024 IEEE Conference on
Software Testing, Verification and Validation (ICST), Toronto, ON,
Canada: IEEE, May 2024, pp. 353–360. doi:
10.1109/ICST60714.2024.00039.

[4] B. Steenhoek, M. Tufano, N. Sundaresan, and A. Svyatkovskiy,
“Reinforcement Learning from Automatic Feedback for High-Quality
Unit Test Generation,” Jan. 06, 2025, arXiv: arXiv:2412.14308. doi:
10.48550/arXiv.2412.14308.

[5] L. Harries et al., “DRIFT: Deep Reinforcement Learning for Functional
Software Testing,” Jul. 16, 2020, arXiv: arXiv:2007.08220. doi:
10.48550/arXiv.2007.08220.

[6] A. Pang, M. Wang, M.-O. Pun, C. S. Chen, and X. Xiong, “iLLM-TSC:
Integration reinforcement learning and large language model for traffic
signal control policy improvement,” Jul. 08, 2024, arXiv:
arXiv:2407.06025. doi: 10.48550/arXiv.2407.06025.

[7] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
Flaky Tests: The Developer’s Perspective,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Aug. 2019,
pp. 830–840. doi: 10.1145/3338906.3338945.

[8] W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, and J. Bell, “A large-
scale longitudinal study of flaky tests,” Proc. ACM Program. Lang., vol.
4, no. OOPSLA, pp. 1–29, Nov. 2020, doi: 10.1145/3428270.

[9] J. Yin, A. Bose, G. Cong, I. Lyngaas, and Q. Anthony, “Comparative
Study of Large Language Model Architectures on Frontier,” in 2024
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), San Francisco, CA, USA: IEEE, May 2024, pp. 556–569. doi:
10.1109/IPDPS57955.2024.00056.

[10] S. Minaee et al., “Large Language Models: A Survey,” Feb. 20, 2024,
arXiv: arXiv:2402.06196. doi: 10.48550/arXiv.2402.06196.

[11] K. S. Kalyan, “A survey of GPT-3 family large language models
including ChatGPT and GPT-4,” Natural Language Processing Journal,
vol. 6, p. 100048, Mar. 2024, doi: 10.1016/j.nlp.2023.100048.

[12] X. V. Lin et al., “Few-shot Learning with Multilingual Language
Models,” Nov. 10, 2022, arXiv: arXiv:2112.10668. doi:
10.48550/arXiv.2112.10668.

[13] M. Gimelfarb, S. Sanner, and L. Chi-Guhn, “∊-BMC: a Bayesian
ensemble approach to epsilon-greedy exploration in model-free
reinforcement learning,” in Proceedings of the 35th Uncertainty in
Artificial Intelligence Conference, Tel Aviv, 2019, pp. 476–485.

[14] C. Dann, Y. Mansour, M. Mohri, A. Sekhari, and K. Sridharan,
“Guarantees for Epsilon-Greedy Reinforcement Learning with Function
Approximation,” Jun. 19, 2022, arXiv: arXiv:2206.09421. doi:
10.48550/arXiv.2206.09421.

[15] R. Bellman, Dynamic programming, First Princeton landmarks in
mathematics edition. in Princeton landmarks in mathematics. Princeton:
Princeton University Press, 2010.

[16] H. Yu, A. R. Mahmood, and R. S. Sutton, “On Generalized Bellman
Equations and Temporal-Difference Learning,” in Advances in Artificial
Intelligence, vol. 10233, M. Mouhoub and P. Langlais, Eds., in Lecture
Notes in Computer Science, vol. 10233. , Cham: Springer International
Publishing, 2017, pp. 3–14. doi: 10.1007/978-3-319-57351-9_1.

16

